THE UNIVERSITY OF ADELAIDE

Richard Saing Jayden Hayward

Supervised by Derek Abbott & Andrew Allison

THE BALL BEARING MOTOR MYSTERY (142)

adelaide.edu.au

Outline

Introduction

- Background
- Previous Studies
- Project Aims
- Design
 - Experiment and Motor
 - Budget
- Experiments
 - Results
 - Discussion
- Future Work

Background

http://www.electricstuff.co.uk/bbmotor.html

Background

• Gruenberg's Electromagnetic theory predicts a squared relationship between angular velocity and torque

Previous Studies

- Large amounts of current to operate motor
- Rapid deterioration of the ball bearings
- Previous students submerged ball bearings in kerosene to reduce friction, thus reducing its self destructive behaviour

https://d3vl3jxeh4ou3u.cloudfront.net/IISTD% 20Damaged%20Wheel%20Bearing%20.jpg

Project Aims

- Establish relationship between Angular Velocity and Torque
 - Test an alterative version of the motor
 - Investigate magnetic behaviour using simulation software

DesignExperiment and Motor

Experiment and Motor

Gallium

https://www.businessinsider.com/gallium-safemetal-liquid-mercury-2016-5/?r=AU&IR=T

The University of Adelaide

Design Experiment and Motor

Item	Quantity	Cost for required items
Gallium (250g)	2	\$278.40
Tachometer	1	\$62.95
Arduino Mega	1	\$49.95
Tungsten rod	2	\$30
Ball bearing races	10	\$25
Mini Load Cell	1	\$25.67
Steel Shaft	1	\$15.70
Load Cell Signal Amplifier	1	\$9.95
Stainless steel discs	2	\$0
Encoder wheel	1	\$0 (3D printed)
Torque arm	1	\$0 (3D printed)
	Total Cost	\$497.62

• Results

• **Results**

• Results

angular velocity (rad/s)

• **Discussion**

- Simulations show magnetic field behaviour described by Silvestrov and Zimenkov
- As the angular velocity vs. torque relationship was found to be a squared one, Gruenberg's electromagnetic theory was favoured
- Results from this project does not sufficiently prove or disprove any of the theories

Future Work

- Repeat the alternative experiment with a smaller motor
- To experiment with different materials
- Repeat simulations using different programs

THE UNIVERSITY of ADELAIDE

CRICOS PROVIDER NUMBER 00123M