

Is secure communication possible? Final Seminar

Yuanhao Liu, Christopher Lau **Supervisors** Prof. Derek Abbott Dr. James Chappell Mr. Lachlan Gunn

adelaide.edu.au

Outline

• Introduction

- Project Aims
- One Time Pad

Design

- Round Trip Times
- Parity Iteration Protocol
- Cascade Protocol
- Implementation
 - Socket Programming
 - Eavesdropper
- Project Management
- Conclusions and Questions

Introduction

Aim

- Investigation of Timing Based Key Agreement:
 - Its operation
 - Its limitations
- This method of generating a secure key is proposed to be a classical alternative to quantum key distribution

One Time Pad

Figure: Private key transmission [4]

One Time Pad

Round Trip times

Round Trip Time for Alice: T_A Round Trip Time for Bob: T_B Round Trip Time for Eve: T_E

Ideal Case $T_A = T_B != T_E$

Real Case $T_A \mathrel{!=} T_B \mathrel{!=} T_E$

Round Trip Times to Bit Stream

Parity bit generation

Bit A	Bit B	Parity bit			
1	1	0			
1	0	1			
0	1	1			
0	0	0			
School of Electrical and Electronic Engineering The University of Adelaid					

 \rightarrow

Parity iteration protocol

01011010 1001 1001 1101 1101 1100 Alice: 01011011 0110 1010 1111 0011 1010 Bob: 01 0 0 1 1 4 1 0 1 1 00011 Alice: 0 0 1 1 0 1 0 1 1 Bob: 0 0 1 0 1 1 10

Parity iteration protocol (example)

BER: Bob = 0.2; BER: Eve = 0.1

Figure: Left: Bob's errors, Right: Eve's errors. [3]

Parity iteration protocol (example)

After one iteration BER: Bob = 0.06; BER: Eve = 0.1

Figure: Left: Bob's errors, Right: Eve's errors. [3]

Parity iteration protocol (example) After two iterations BER: Bob = 0.005; BER: Eve = 0.1

Figure: Left: Bob's errors, Right: Eve's errors. [3]

Parity iteration protocol

•Parity bits of each block are computed

•Parity bits of corresponding blocks are compared

•Retain the blocks for which the corresponding parity bits are the same and remove the blocks for which the corresponding parity bits are different

Cascade Protocol

 Alice:
 01010110
 Cascade

 Bob:
 10010010
 protocol

Alice: 01010110 Bob: 10010110

• Correct the error bit in each block

- Entire bitstream is randomly shuffled after correction
- Keep correcting error until bit error rate is within an acceptable level

Cascade Protocol

Comparison of data transmitted in each protocol

Cascade Protocol	Parity Protocol
data $\cong n * m * \log_2 k$ n: passes m:block numbers k: block sizes	$data \cong z$ z:string length

Cascade Protocol

Limitations

- Trade-off between block size and information leakage
- For each pass (going through all the blocks), only one error can be corrected at a time
- The parity check does not always indicate the correctness of the corresponding blocks
- This is because if there was an **even** number of errors, the parity check would indicate that the parity of the corresponding blocks are the same despite the presence of errors

Socket Programming

Data transmitted

Parity bit of Alice "1" or "0"
Response from Bob "correct" or "error"
Random number SERVER: Waiting for incoming connection ... A connection was found! 1 is sent message from client: error alice: 11010101 alice: 1101 alice: 01 alice: 0 CLIENT: Do you want to connect to this server? (Y/N) Y Reply received message from server: 1 Data Send bob: 00111111 Reply received

message from server the parity bit: 1 parity_left_b: 0 bob: 0011 Reply received

message from server the parity bit: 0 parity_left_b: 0 bob: 11 Reply received

message from server the parity bit: 0 parity_left_b:1 bob: 1 location: 2 bob: 00011111

Socket Programming

```
SERVER: Waiting for incoming connection ...
A connection was found!
Ø is sent
message from client: correct
```

parity_b: 0 CLIENT: Do you want to connect to this server? (Y/N) y Reply received

```
message from server: Ø
Data Send
```

Socket Programming

```
SERVER: Waiting for incoming connection ...
A connection was found!
Ø is sent
message from client: correct
begin to shuffle
message from client: 120Massage send to client: 120
CLIENT: Do you want to connect to this server? (Y/N)
y
Reply received
message from server: Ø
Data Send
begin to shuffle
```

message from server: 120Massage send to server: 120

Eavesdropper

- The only info that the eavesdropper is able to obtain is the parity bits.
- She relies on these bits to determine whether which of her bits needs to be corrected
- Therefore, if Eve solely relies on the parity bits to correct her bit stream, her bit error rate is expected to not decrease as much as between Alice and Bob

Monitoring the network transmission

Packets transmitted

Filter:	tcp		×	Expression C	lear Apply Save
No.	Time	Source	Destination	Protocol Leng	th Info
	17 15.1308060	192.168.0.2	192.168.0.3	ТСР	74 37811 > ddi-tcp-1 [SYN] Seq=0 win=14600 Len=0 MSS=1460 SACK_PERM=1 TSval=463737 TSecr=0 WS=128
1	20 15.1323360	192.168.0.3	192.168.0.2	TCP	74 ddi-tcp-1 > 37811 [SYN, ACK] Seq=0 Ack=1 Win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1 TSval=5184585 T
	21 15.1323370	192.168.0.2	192.168.0.3	TCP	66 37811 > ddi-tcp-1 [ACK] Seq=1 Ack=1 Win=14720 Len=0 TSval=463738 TSecr=5184585
	22 15.1351800	192.168.0.3	192.168.0.2	TCP	67 ddi-tcp-1 > 37811 [PSH, ACK] seq=1 Ack=1 Win=17152 Len=1 TSval=5184585 TSecr=463738
	23 15.1354340	192.168.0.2	192.168.0.3	TCP	66 37811 > ddi-tcp-1 [ACK] seq=1 Ack=2 Win=14720 Len=0 TSval=463738 TSecr=5184585
	24 15.1362350	192.168.0.2	192.168.0.3	тср	71 37811 > ddi-tcp-1 [PSH, ACK] seq=1 Ack=2 Win=14720 Len=5 TSval=463738 Tsecr=5184585
	25 15.1406400	192.168.0.3	192.168.0.2	TCP	67 ddi-tcp-1 > 37811 [PSH, ACK] seq=2 Ack=6 Win=17152 Len=1 TSval=5184585 TSecr=463738
	26 15.1414360	192.168.0.2	192.168.0.3	TCP	73 37811 > ddi-tcp-1 [PSH, ACK] seq=6 Ack=3 Win=14720 Len=7 TSval=463739 TSecr=5184585
	27 15.1438350	192.168.0.3	192.168.0.2	TCP	67 ddi-tcp-1 > 37811 [PSH, ACK] seq=3 Ack=13 win=17152 Len=1 Tsval=5184586 Tsecr=463739
	28 15.1448340	192.168.0.2	192.168.0.3	TCP	73 37811 > ddi-tcp-1 [PSH, ACK] seq=13 Ack=4 win=14720 Len=7 T5val=463739 Tsecr=5184586
	29 15.1463380	192.168.0.3	192.168.0.2	TCP	67 ddi-tcp-1 > 37811 [PSH, ACK] seq=4 Ack=20 win=17152 Len=1 Tsval=5184586 Tsecr=463739
	30 15.1489540	192.168.0.2	192.168.0.3	тср	71 37811 > ddi-tcp-1 [PSH, ACK] seq=20 Ack=5 win=14720 Len=5 T5val=463739 Tsecr=5184586
	31 15.1494800	192.168.0.2	192.168.0.3	TCP	74 37812 > ddi-tcp-1 [SYN] seq=0 win=14600 Len=0 MSS=1460 SACK_PERM=1 TSval=463739 TSecr=0 WS=128
	32 15.1497230	192.168.0.3	192.168.0.2	тср	66 ddi-tcp-1 > 37811 [FIN, ACK] seq=5 Ack=25 win=17152 Len=0 Tsval=5184587 Tsecr=463739
	33 15.1499470	192.168.0.3	192.168.0.2	тср	74 ddi-tcp-1 > 37812 [SYN, ACK] seq=0 Ack=1 win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1 TSval=5184587 T
	34 15.1501500	192.168.0.2	192.168.0.3	тср	66 37812 > ddi-tcp-1 [ACK] seq=1 Ack=1 Win=14720 Len=0 TSval=463739 Tsecr=5184587
	35 15.1573400	192.168.0.3	192.168.0.2	TCP	67 ddi-tcp-1 > 37812 [PSH, ACK] seq=1 Ack=1 Win=17152 Len=1 TSval=5184587 TSecr=463739
	36 15.1588370	192.168.0.2	192.168.0.3	TCP	66 37812 > ddi-tcp-1 [ACK] seq=1 Ack=2 win=14720 Len=0 TSval=463740 Tsecr=5184587
	37 15.1588370	192.168.0.2	192.168.0.3	тср	71 37812 > ddi-tcp-1 [PSH, ACK] seq=1 Ack=2 Win=14720 Len=5 TSva]=463740 Tsecr=5184587
	38 15.1653370	192.168.0.3	192.168.0.2	тср	67 ddi-tcp-1 > 37812 [PSH, ACK] seq=2 Ack=6 Win=17152 Len=1 TSval=5184588 TSecr=463740
	39 15.1663360	192.168.0.2	192.168.0.3	тср	71 37812 > ddi-tcp-1 [PSH, ACK] Seq=6 Ack=3 Win=14720 Len=5 TSval=463741 TSecr=5184588
4	40 15.1678370	192.168.0.3	192.168.0.2	тср	67 ddi-tcp-1 > 37812 [PSH, ACK] seq=3 Ack=11 win=17152 Len=1 Tsval=5184588 Tsecr=463741
4	41 15.1688520	192.168.0.2	192.168.0.3	тср	73 37812 > ddi-tcp-1 [PSH, ACK] seq=11 Ack=4 win=14720 Len=7 Tsval=463741 Tsecr=5184588
4	42 15.1698380	192.168.0.3	192.168.0.2	TCP	67 ddi-tcp-1 > 37812 [PSH, ACK] seq=4 Ack=18 win=17152 Len=1 Tsval=5184588 Tsecr=463741
4	43 15.1698380	192.168.0.2	192.168.0.3	TCP	71 37812 > ddi-tcp-1 [PSH, ACK] seq=18 Ack=5 win=14720 Len=5 Tsval=463741 Tsecr=5184588
<					>
🗄 Fra	ume 17: 74 by	tes on wire (59	92 bits), 74 bytes captı	ured (592 bi	ts) on interface 0
🗄 Eth	ernet II, Sr	<pre>c: 02:82:03:c1:</pre>	:62:42 (02:82:03:c1:62:4	42), Dst: Co	mpalIn_c5:cc:d9 (20:89:84:c5:cc:d9)
🗄 Int	ernet Protoc	ol Version 4, s	Src: 192.168.0.2 (192.10	68.0.2), Dst	: 192.168.0.3 (192.168.0.3)
🗄 Tra	Insmission Co	ntrol Protocol,	, Src Port: 37811 (37811	1), Dst Port	: ddi-tcp-1 (8888), Seq: 0, Len: 0
0000	20 89 84 c5	cc d9 02 82 0	03 c1 62 42 08 00 45 00		b8E.
0010	00 3c bb 2c	40 00 40 06 f	e 39 c0 a8 00 02 c0 a8	.<.,@.@.	.9
0020	00 03 93 b3	22 b8 14 cc a	as 55 00 00 00 00 a0 02		. U
0040	13 79 00 00	00 00 02 04 0	13 04 04 02 08 0a 00 07	9	
0040	15 / 5 00 00	00 00 01 05 0			

School of Electrical and Electronic Engineering | The University of Adelaide

Data Analysis

Cascade protocol for Eve

Gantt Chart

Risk Management

Risk	Likelihood	Severity	Avoidance / Mitigation Strategies
Project files missing or are not accessible	Very Low	Low	We will ensure that all work related to the project is stored on the cloud via the project's Wiki, Google Drive and Dropbox and is accessible by both team members.
Unavailability of team member	Low	Medium	Team members will keep each other informed about their work on the project which will allow their work to continue should a team member be unavailable.
Physical parts do not arrive and/or do not work in time for project completion	High	Medium	Ensure constant communication is sought with the suppliers regarding the progress of the delivery in order to plan for contingencies which include expediting work on improvements to Timing Based Encryption
Falling behind schedule due to increased complexity of work undertaken	Medium	Medium	Revaluate the scope of the project and if necessary restrict the scope to focus, among other things, on improving the functionality of the Timing Based Encryption and the encryption's efficiency.
Not finding a solution to our project	Very High	Very Low	Ensure any progress made is documented and can be used as the basis for the final seminar and exhibition

 \Rightarrow

Project Management

Conclusion

Questions?

References

[1] Mateo J. M. et al. 'Demystifying the Information Reconciliation Protocol Cascade', http://arxiv-web3.library.cornell.edu/pdf/1407.3257v1.pdf

[2] Brassard G., Salvail L. 'Secret-Key Reconciliation by Public Discussion' http://link.springer.com/content/pdf/10.1007%2F3-540-48285-7_35.pdf

[3] Lachlan J. G., James M. C., Andrew A., Derek A., 'Physical layer encryption on the public internet: a stochastic approach to the Kish – Sethuraman cipher', School of Electrical and Electronic Engineering, The University of Adelaide, 31/10/2013.

[4] Tradecraft Artefacts, Canadian Security Intelligence Service, https://www.csis.gc.ca/hstrrtfcts/rtfcts/trdrtfctsndx-en.php