
Two toy models for the motion of a leaky tank car

Robin Ekman∗

Department of Physics, Ume University, Ume̊a University, SE–901 87 Ume̊a, Sweden
(Dated: June 12, 2019)

I present two toy models for the motion of a tank car as fluid drains out of an off-center opening,
based on replacing the fluid with particles. No knowledge beyond simple Lagrangian mechanics is
required. The first toy model is solved analytically and the second can be simulated numerically for
a variety of initial conditions and mass ratios. Both toy models show the car turning around once
as is required by conservation of momentum.

I. INTRODUCTION

The leaky tank car problem1 refers to finding the mo-
tion of a tank car filled with liquid, as the liquid drains
out of an off-center hole, vertically relative to the car, as
in Fig. 1. Since the center of mass of the liquid moves
towards the hole, the tank car must begin to move in the
opposite direction to conserve the horizontal momentum
of the complete system of tank car and liquid. Eventu-
ally, the tank car must turn around, or all the liquid and
the tank car would have acquired momentum in the same
direction.

A quantitative description of the motion is precluded
by the complexity of fluid flow. McDonald1 has ana-
lyzed the problem by integrating over the liquid mass,
abstracting the fluid flow into just a rate of discharge.
In this paper I present two toy models that replace the
liquid with solid particles, reducing the problem to basic
Lagrangian mechanics. In both cases, the car is found to
turn around.

II. INCLINED PLANE TOY MODEL

The first toy model consists of an inclined plane and
several blocks that can slide without friction along the
plane. At the low end of the plane is a vertical plate that
the blocks will collide with, bringing them to rest relative
to the plane, see Fig. 2

Letting x be the position of the car and li be a coor-
dinate along the plane for the i:th block, the Lagrangian

x̂

FIG. 1. A leaky tank car.

for this system is

LI =
M

2
ẋ2 +

n∑
i=1

m

2
( ˙̀
i
ˆ̀+ ẋx̂)2 +mg`i sin θ. (1)

Here θ is the angle of the plane, M is the mass of the car,
and m is the mass of each block. The coordinates `i are
taken to increase descending the plane, i.e., the potential
energy is decreasing with increasing `i.

This Lagrangian is valid up to the time τ when the first
block collides with the plate. At that point, the block is
brought to rest relative to the car, i.e,. ˙̀

1 → 0. The
impulse received by the block is

I = m
(
ẋ(τ+)− ẋ(τ−)− ˙̀

1(τ−) cos θ
)

(2)

where τ± refers to a quantity just before (after) the col-
lision. By Newton’s third law, the car receives an equal
but opposite impulse. This gives us an equation for
ẋ(τ+)− ẋ(τ−),

M (ẋ(τ+)− ẋ(τ−))

= −m
(
ẋ(τ+)− ẋ(τ−)− ˙̀

1(τ−) cos θ
)

(3)

which is readily solved:

ẋ(τ+)− ẋ(τ−) =
m cos θ

M +m
˙̀
1(τ−). (4)

After the collision, the system is described by a La-
grangian of the same type, with n′ = n− 1, using ẋ(τ+)

and `i(τ), ˙̀
i(τ), i > 1, as initial conditions.2
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FIG. 2. Inclined plane toy model.
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The equations of motion are found as

(M + nm)ẍ+m cos θ

n∑
i=1

῭
i = 0 (5a)

m῭
i +m cos θẍ = mg`i sin θ (5b)

and can be written in matrix form,
M/m+ n cos θ · · · cos θ

cos θ 1 · · · 0
...

...
. . .

...
cos θ 0 · · · 1



ẍ
῭
1

...
῭
n

 = g̃


0
`1
...
`n

 (6)

where g̃ = g sin θ. The first equation is a statement of
the conservation of momentum in the x̂-direction. This
reflects that the Lagrangian is invariant under x 7→ x+a,
so that the conjugate momentum is conserved.

The cases n = 1 and n = 2 are tractable by hand.

A. One block

The qualitative behavior of the n = 1 case, with only
one block, is easily understood. After the block collides
with the plate, it is at rest relative to the car. The only
way for momentum to be conserved is if both are also at
rest relative to the ground. That is, as the block slides
to the right, the car moves to the left; when the block
collides with the plate, the whole system comes to a stop
relative to the ground. Because of Galilei invariance, we
realize that if the system is initially moving relative to
the ground, the car returns to its initial velocity.

Let us demonstrate this quantitatively. We solve for ẍ
from Eq. (5b)

ẍ = −῭ m

m+M
cos θ (7)

and substitute into the equation for ῭,

῭
(

1− m

m+M
cos2 θ

)
= g sin θ (8)

Clearly ˙̀ = at + ˙̀(t = 0) for a constant acceleration a.
From Eq. (4), we then have

ẋ(τ+)− ẋ(τ−) =
m cos θ

M +m
(aτ + ˙̀(t = 0)), (9)

but Eq. (7) gives

ẋ(τ−) = −m cos θ

M +m
at+ ẋ(t = 0) (10)

and thus

ẋ(τ+) = ẋ(t = 0) +
m cos θ

M +m
˙̀(t = 0). (11)

We have allowed for ˙̀(t = 0) 6= 0 as this more general
result will be used in the following.

B. Two blocks

By substituting for ẍ in the equations for `1, `2, we find

῭
1 −m cos2 θ

῭
1 + ῭

2

M + 2m
= g sin θ (12a)

῭
2 −m cos2 θ

῭
1 + ῭

2

M + 2m
= g sin θ (12b)

and this system can be solved, e.g. by writing it in matrix
form and inverting the 2× 2 matrix to find

῭
i =

1

1− 2b
g sin θ = a2 (13)

where b = m cos2 θ/(M + 2m). The blocks undergo the
same acceleration because they are identical and g is con-
stant. We could have used this from the beginning to
derive the same result.

Substituting into the equation for ẍ, we find

(M + 2m)ẍ+
2m cos θ

1− 2b
g sin θ = 0. (14)

and

ẋ = − 2m cos θ

M + 2m
a2 (15)

When the first block hits the plate at τ1,

ẋ(τ1+)− ẋ(τ1−) =
m cos θ

M +m
a2τ1, (16)

so

ẋ(τ1+) = − 2m cos θ

M + 2m
a2τ1 +

m cos θ

M +m
a2τ1. (17)

We now use ẋ(τ1+) and ˙̀
2 = aτ1 as initial conditions

for the one-block case that was treated in the previous
section. This gives us, according to Eq. (11)

ẋ(τ2+) = ẋ(τ1+) +
m cos θ

M +m
˙̀
2(τ1) =

− 2m cos θ

M + 2m
a2τ1 +

m cos θ

M +m
a2τ1 +

m cos θ

M +m
a2τ1. (18)

Since M + 2m > M + m, this is positive, meaning the
car is moving to the right.

However, in this model, the turning is abrupt, as it is
the result of the second hard collision against the plate.
In the next section, I will present a model where the
motion is smoother.

III. CURVED PIPE TOY MODEL

This model consists of a curved pipe, specifically in
the shape of a quarter circle, mounted to a car. The
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FIG. 3. Curved pipe toy model.

pipe bends smoothly to vertical. Balls of mass m move
without friction or rolling in the pipe. The Lagrangian
for this system is

LC =
M

2
ẋ2 +

n∑
i=1

m

2
(rθ̇iθ̂ + ẋx̂)2 −mgr sin θi. (19)

where θi is the angle from horizontal and r is the radius
of the pipe. M and m are masses, as before. Clearly

θ̂ · x̂ = − sin θ. The toy model is illustrated in Fig. 3.
The equations of motion can be put in matrix form

similar to before,


M/m+ n −r sin θ −r sin θ · · · −r sin θ
−r sin θ r2 0 · · · 0
−r sin θ 0 r2 · · · 0

...
...

...
. . .

...
−r sin θ 0 0 · · · r2



ẍ

θ̈1
θ̈2
...

θ̈n

 = −gr


0

cos θ1
cos θ2

...
cos θn

+


r
∑
θ̇2i cos θi

ẋθ̇1 cos θ1
ẋθ̇2 cos θ2

...

ẋθ̇n cos θn

 (20)

but because this system is nonlinear through both prod-
ucts of velocities and the trigonometric function, it can-
not be solved analytically even for n = 1.

It is, however, not too difficult to implement a numer-
ical scheme. Such a scheme solves numerically the equa-
tions of motion Eq. (20) until it detects that a ball has
reached the bottom of the pipe (θi < 0). It records the
time, the positions and velocities at this time, and then
continues with one ball fewer, until there are no balls left
or the maximum time is reached.

I have written such a code in in Python using the numpy
and scipy packages. The code allows for an arbitrary
number of balls and flexible specification of their initial
positions. In the simulations presented here I have set
r = 1 and g = 2, corresponding to measuring lengths in
units of the pipe radius and time in units of t0, the free-
fall time from a height r. Consequently, velocities are
measured in units of v0 = gt0, half the free-fall velocity.

Figs. 4 and 5 show the output of two simple runs, with
a single ball starting at θ = π

4 and n = 5 balls starting
between θ = 0.01π and θ = π

4 , at equally spaced angles.
We see that, just as in the inclined plane toy model, with
a single particle the car returns to rest; with multiple it
turns around once.

In Fig. 4, one sees that the center of mass remains
at rest to within numerical accuracy. This is the case
for all runs reported here, and is because the first row
of Eq. (20) is precisely a statement of conservation of
horizontal momentum.

In Fig. 5 I have indicated with dashed lines when balls
– other than the last – fall out of the pipe. Looking
closely, one can see that there are kinks in the ẋ curve
at precisely these times, i.e., the acceleration has dis-
continuities at these times. While the transition from a
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FIG. 4. Velocities of the car (solid), ball (dashed) and center
of mass (dotted). With a single ball, the car and the ball both
end at rest.

circle to a straight line is only once differentiable and one
could use a more intricately shaped pipe that transitions
smoothly into a straight line instead,3 the discontinuities
in the acceleration would still remain, because the con-
straint force from the pipe is discontinuous across θ = 0.

The discontinuities can be made less apparent by in-
stead using a greater number of lighter balls, as in Fig. 6.
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IV. CONCLUDING REMARKS

The models presented in this paper can be used to illus-
trate to students the value of highly simplified toy models
and a “try simplest cases” approach. In the present case,
replacing complex fluid flow with relatively simple parti-
cle motion produces toy models that are if not solvable
by hand, then at least simple to simulate, and with qual-
itatively correct behavior.

While the simplest way to obtain the equations of mo-
tion is to use the Lagrangian approach, using Newton’s
second law with constraint forces is also possible, and
the models thus require nothing beyond an introductory
undergraduate mechanics course. They could form the
basis for a computer lab in such a course.
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FIG. 5. Velocities of the car (solid), one of the balls (dashed)
and center of mass (dotted). With multiple balls, the car
turns around once. Vertical dashed lines indicate when balls
fall out of the pipe.
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(1991).
2 Because the other blocks do not undergo hard collisions at
t = τ , `i, i > 0 is smooth at t = τ and there’s no need to
distinguish between τ− and τ+.

3 E.g., let the x and y coordinates be given by a bump func-
tion f , an infinitely differentiable function with f(t) = 0 for
t < a and f(t) = 1 for t > b.
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FIG. 6. Using a larger number of balls – with the same total
mass – hides the discontinuous acceleration, but results in
similar motion.
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