THE UNIVERSITY MADELAIDE

Azizul Hakim Luqman Ul Hakim Ng Zihe Wang Supervised by: Professor Derek Abbott Dr Andrew Allison

Project 141: Who Killed the Somerton Man

adelaide.edu.au

Outline

- Introduction
 - Background
 - Project Aims and Motivation
- Specific Tasks
 - Task 1
 - Task 2
 - Task 3
 - Task 4
- Conclusion
- Project management
- Reference

Introduction

Background

• Who?

The Somerton Man

• What?

Found dead

• When?

December 1st, 1948

• Where?

Somerton Beach, SA

• How?

Unknown - mystery

Somerton Man's DNA

- Hair sample in the Police Museum
- Extract DNA from the hair sample
- Degraded due to being kept for long

Deoxyribonucleic Acid (DNA)

- Carrying genetic instructions
- A code formed from a chain of 4 chemical bases (nucleotides): adenine (A), guanine (G), cytosine (C) and thymine (T)
- DNA forms chromosomes

Single Nucleotide Polymorphism (SNP)

- A variation of base pairs at a specific position in a DNA sequence
- Defines characteristics of individuals (eg. eye colour)

Single Nucleotide Polymorphism (SNP)

Individual 2

Somerton Man's DNA file

#rsid	chromoso	ome	position	genotype
rs548049	9170	1	69869	
rs133286	584	1	74792	
rs928315	50	1	565508	
i713426		1	726912	
rs116587	7930	1	727841	
rs313197	72	1	752721	
rs121843	325	1	754105	
rs125676	539	1	756268	
rs114525	5117	1	759036	
rs121248	819	1	776546	
rs121274	425	1	794332	
rs793739	928	1	801536	
rs728888	853	1	815421	
rs75383(95	1	824398	
rs284446	599	1	830181	
i713449		1	830731	
rs116452	2738	1	834830	
rs726318	887	1	835092	
rs286786	593	1	838665	
rs497038	82	1	840753	
rs447569	91	1	846808	СТ

Project Aims and Motivation

- To find possibilities of who the Somerton Man was - taking a step forward to solving the unsolved mystery
- To evaluate the robustness of the Somerton Man's DNA
- To identify any possible diseases and physical characteristics of the Somerton Man
- To find the relatives, and finally find out who he actually was

Task 1: Testing with Somerton Man's DNA reference file

Aims

- Counting amounts of SNP
- Try to conduct DNA analysis on Somerton's DNA

Task 1: Testing with Somerton Man's DNA reference file Method

- Writing codes to count the SNPs of the DNA files with C++ language
- Upload the file to genesis.gedmatch.com (GEDmatch) which provide DNA analysis services

- GEDmatch is a website that has an open data personal genomics database and provide tools for DNA and genealogy research
- Tools used:
 - One-To-Many DNA Comparison
 - Eurogenes Ad-Mix Utilities for ethnicity examination
- 2000 SNPs minimum requirements for uploading DNA file

Task 1 Results

- 613905 SNPs in the DNA data files
- 2.08% of SNPs are not empty
- Rejected by GEDmatch for DNA match test

Counting results of SNPs					
Chromosome	Total amount	Exist amount	Percentage		
1	49510	1014	2.05%		
2	51771	978	1.89%		
3	43023	658	1.53%		
4	39473	621	1.57%		
5	37028	661	1.79%		
6	44021	880	2.00%		
7	34356	655	1.91%		
8	31681	601	1.90%		
9	26445	519	1.96%		
10	30522	705	2.31%		
11	30943	705	2.28%		
12	29432	596	2.03%		
13	22080	393	1.78%		
14	19961	441	2.21%		
15	19006	440	2.32%		
16	20396	558	2.74%		
17	19401	519	2.68%		
18	17674	372	2.10%		
19	14879	514	3.45%		
20	14781	375	2.54%		
21	8607	245	2.85%		
22	8915	303	3.40%		
Total	613905	12753	2.08%		

Task 2: Artificially recover the DNA file

Aims

- Create synthetic DNA files based on Somerton Man's file using different strategies/algorithm
- To see if there is any people in DNA public database links to the artificial DNA

Task 2: Artificially recover the DNA file

Method

- Writing code to artificially complete the DNA file (replace the empty SNPs) for different levels (eg. 2000, 3000, 5000 SNPs for each chromosome)
- Strategies include replace empty SNPs with random base pairs or homozygous pairs (eg. AA, GG, TT, CC).

Task 2: Artificially recover the DNA file (cont.)

#rsid c	chromoso	ome	position	genotype	#rsid	chromos	ome	position	genotype
rs5480491	170	1	69869	GA	rs548049	9170	1	69869	AA
rs1332868	34	1	74792	GC	rs133286	684	1	74792	AA
rs9283150)	1	565508	TA	rs92831	50	1	565508	AA
i713426		1	726912	TG	i713426		1	726912	AA
rs1165879	930	1	727841	AG	rs116587	7930	1	727841	AA
rs3131972	2	1	752721	GT	rs313197	72	1	752721	AA
rs1218432	25	1	754105	CA	rs121843	325	1	754105	AA
rs1256763	39	1	756268	ТА	rs125676	639	1	756268	AA
rs1145251	17	1	759036	СТ	rs114525	5117	1	759036	AA
rs1212481	19	1	776546	GC	rs121248	819	1	776546	AA
rs1212742	25	1	794332	GT	rs121274	425	1	794332	AA
rs7937392	28	1	801536	СТ	rs793739	928	1	801536	AA
rs7288885	53	1	815421	AC	rs728888	853	1	815421	AA
rs7538305	5	1	824398	AA	rs753836	05	1	824398	AA
rs2844469	99	1	830181	CA	rs284446	699	1	830181	AA
i713449		1	830731	CG	i713449		1	830731	AA
rs1164527	738	1	834830	тс	rs116452	2738	1	834830	AA
rs7263188	37	1	835092	GA	rs726318	887	1	835092	АА
rs2867869	93	1	838665	AA	rs286786	693	1	838665	AA
rs4970382	2	1	840753	CG	rs497038	82	1	840753	AA

Task 2: Artificially recover the DNA file

Results

- No DNA kits matched with the kits that were modified from Somerton Man's reference file.
- Even replace all empty SNPs result a 0 match.

Kit: [23andMe]

Kit 1:1 Name Email Largest Seg Total cM Gen Overlap Date Compared Testing Company 0 is number of matches reported

Task 2: Artificially recover the DNA file

Conclusion

- A DNA file with only 2% SNPs available cannot be used in DNA match test
- The recovery strategies introduced in 'Method' are too simple and can not help to find the related DNA

Task 3: Investigation on ethnicity Aims

- Conduct the ethnicity analysis on Somerton Man's DNA
- To prove that the ethnicity report of low quality DNA data is reliable

Task 3: Investigation on ethnicity Method

- Using Eurogenes Ad-Mix Utilities to generate ethnicity reports
- 'Calculator' model: 'Eurogenes K13'

Task 3: Investigation on ethnicity Method(cont.)

- Obtain 2 DNA samples in same format of Somerton Man's file
- Degrade these samples: remove certain percentage of SNPs
- Degrade these samples by removing 10%, 20% until 90% of SNPs.
- Also degrade the samples to the same level of Somerton Man's file (2.08% SNPs remaining)

Task 3: Investigation on ethnicity Method(cont.)

- 4 different degradation algorithms implemented:
 - For every 10 SNPs, remove first n% SNPs where n% is the percentage of SNPs we like to remove
 - For every 10 SNPs, remove last n% SNPs where n% is the percentage of SNPs we like to remove
 - Remove first n% of SNPs in each chromosome
 - Remove last n% of SNPs in each chromosome
- Conduct ethnicity analysis on each degraded file, and observe how the ethnicity proportion changes

Task 3: Investigation on ethnicity Results

• Ethinicity report shows Somerton Man comes from North Atlantic(36.21%) and Baltic(20.44%) regions

Task 3: Investigation on ethnicity Results (cont.)

• How ethnicity changes after degradation

Complete DNA sample 1

Complete DNA sample 2

Degraded DNA sample 1 (2.08% SNPs remaining)

Degraded DNA sample 2 (2.08% SNPs remaining)

Task 3: Investigation on ethnicity Results (cont.)

• How ethnicity changes during degradation process

The University of Adelaide

Task 3: Investigation on ethnicity Conclusion

- As more amount of SNPs are removed from a complete human DNA reference file, the result of ethnicity report would be less accurate.
- But for the largest and second largest ethnicity regions in the report are still reliable.
- Therefore the ethnicity of Somerton Man is most probably North Atlantic.

Task 4: Genetic diseases search Aims

- Search clinical effects associated with each available SNP in Somerton Man's DNA data
- Identify any possible genetic disease or physical characteristics that Somerton Man could have

Task 4: Genetic diseases search Method

- Use dbSNP to search genetic diseases
- dbSNP requires user to input rs number in order to observe the clinical significance of each SNP
- Python was used to extract information on the possible genetic diseases on the Somerton Man's DNA from dbSNP

SNP database (dbSNP)

https://www.ncbi.nlm.nih.gov/snp/rs12913832#clinical_significance

Task 4: Genetic diseases search Result

- 574 potential genetic diseases were found associated to Somerton Man's DNA.
- There was no result strongly support Somerton Man's known physical characteristics such as hair colour, teeth structure or eye colour.
- There were no genetic disease related to the Somerton Man found from dbSNP such as enlarged spleen or having huge hands.

Task 4: Genetic diseases search

574 potential genetic diseases

#rsid #alleles #ClinVar Accession #disease name rs5257 {[A>A], [A>G]} RCV000517867.2 not specified rs3754334 {[G>G], [G>A]} RCV000244865.1 not specified rs3754334 {[G>G], [G>A]} RCV000304354.1 Age-related cortical cataract rs1049675 {[G>G], [G>A]} RCV000290348.1 Schwartz Jampel syndrome type 1 rs1049675 {[G>G], [G>A]} RCV000377761.1 Dyssegmental Dysplasia rs35669711 $\{[C>C], [C>T]\}$ RCV000306325.1 Schwartz Jampel syndrome type 1 rs35669711 {[C>C], [C>T]} RCV000398821.1 Dyssegmental Dysplasia rs2229475 {[C>C], [C>T]} RCV000339647.1 Dyssegmental Dysplasia rs2229475 {[C>C], [C>T]} RCV000375538.1 Schwartz Jampel syndrome type 1 rs2254358 {[C>C], [C>A]} RCV000282698.1 Schwartz Jampel syndrome type 1 rs2254358 {[C>C], [C>A]} RCV000374875.1 Dyssegmental Dysplasia rs2782643 {[C>C], [C>T]} RCV000247399.1 not specified rs11577368 {[C>C], [C>A], [C>T]}RCV000438131.1 not specified RCV000263910.1 rs718265 {[A>A], [A>G]} Desmosterolosis rs540796 {[A>A], [A>C], [A>G]} RCV000182574.3 not specified rs540796 {[A>A], [A>C], [A>G]} RCV000256294.6 Familial hypercholesterolemia rs540796 {[A>A], [A>C], [A>G]} RCV000273530.1 Familial hypobetalipoproteinemia rs540796 {[A>A], [A>C], [A>G]} RCV000600317.1 Hypercholesterolemia, autosomal dominant, 3 rs562556 {[G>G], [G>A]} RCV000182572.3 not specified rs562556 {[G>G], [G>A]} RCV000256256.6 Familial hypercholesterolemia rs562556 {[G>G], [G>A]} RCV000330942.1 Familial hypobetalipoproteinemia Hypercholesterolemia, autosomal dominant, 3 rs562556 {[G>G], [G>A]} RCV000605201.1 RCV000030349.7 Familial hypercholesterolemia rs505151 {[G>G], [G>A]} RCV000252382.2 rs505151 {[G>G], [G>A]} not specified rs505151 {[G>G], [G>A]} RCV000364880.1 Familial hypobetalipoproteinemia rs505151 {[G>G], [G>A]} RCV000612647.1 Hypercholesterolemia, autosomal dominant, 3 rs14008 {[G>G], [G>A], [G>T]} RCV000352006.1 Corneal Dystrophy, Dominant/Recessive rs1137101 {[A>A], [A>G]} RCV000009047.3 LEPTIN RECEPTOR POLYMORPHISM rs1137101 {[A>A], [A>G]} RCV000281795.1 Monogenic Non-Syndromic Obesity rs1137101 {[A>A], [A>G]} RCV000348520.1 Leptin receptor deficiency rs1137101 {[A>A], [A>G]} RCV000518727.1 not specified rs3112831 {[T>T], [T>C], [T>G]} RCV000085383.5 not provided not specified rs3112831 {[T>T], [T>C], [T>G]} RCV000173675.2 rs3112831 {[T>T], [T>C], [T>G]} RCV000297592.1 Macular degeneration Retinitis Pigmentosa, Recessive rs3112831 {[T>T], [T>C], [T>G]} RCV000303578.1 rs3112831 {[T>T], [T>C], [T>G]} RCV000360724.1 Stargardt Disease, Recessive rs3112831 {[T>T], [T>C], [T>G]} RCV000408013.1 Cone-Rod Dystrophy, Recessive rs3112831 {[T>T], [T>C], [T>G]} RCV000085382.1 not provided RCV000086506.1 not provided rs1801265 {[A>A], [A>G]} rs1801265 {[A>A], [A>G]} RCV00000464.3 Dihydropyrimidine dehydrogenase deficiency RCV000015946.3 Lupus nephritis, susceptibility to rs1801274 {[A>A], [A>C], [A>G]} rs1801274 {[A>A], [A>C], [A>G]} RCV000015947.3 Pseudomonas aeruginosa, susceptibility to chronic infection by, in cystic fibrosis rs1801274 {[A>A], [A>C], [A>G]} RCV000054529.2 Malaria, severe, susceptibility to rs1801274 {[A>A], [A>C], [A>G]} RCV000211160.1 trastuzumab response - Efficacy rs1801274 {[A>A], [A>C], [A>G]} RCV000454909.1 not specified Macular degeneration rs12129650 {[T>T], [T>A], [T>C]} RCV000270640.1

Conclusion

- The quality of Somerton Man's DNA file is poor which is 2% out of 0.6 million SNPs available.
- DNA match services failed on low quality DNA file and simple recovery strategies cannot help to find his relatives.
- Somerton Man's ethnicity is North Atlantic
- 574 genetic diseases found but none was related to Somerton Man's known characteristics
- Somerton Man's identity will remain a mystery

Project Management

Risk Assessment

Risk	Likelihood	Consequences	Risk Estimation
Absence of meeting	Unlikely	Minor	Low
Miscommunication of members	Unlikely	Moderate	Medium
Loss of data	Unlikely	Severe	High
Delay of task completion	Likely	Major	High
Bugs in codes	Likely	Minor	Medium
Out of budget	Rare	Severe	Medium
Misunderstanding of tasks	Unlikely	Moderate	Medium
Unethical works	Unlikely	Major	Medium
Member drop the course	Rare	Severe	Medium
Bad quality of purchased items	Unlikely	Major	Medium

Semester 1	Milestone	Semester 2	Milestone
week 5	Complete Task 1	week 1	Review works
week 6	Proposal Seminar Slides	week 9	Complete Task 3
break	Proposal Seminar	week 12	Exhibition of projects
Week 11	Complete Task 2	Week 12	Final Thesis
Week 12	Thesis Draft	Week 13	Final seminar

Reference

The University of Adelaide (2015). HSW Handbook Appendix C1 [pdf] Available at https://www.adelaide.edu.au/hr/hsw/docs/haz-man-long-form-app-c.pdf [Accessed 9 Apr. 2019].

Nature.com. (2019). single nucleotide polymorphism / SNP | Learn Science at Scitable. [online] Available at: https://www.nature.com/scitable/definition/single-nucleotide-polymorphism-snp-295 [Accessed 10 Apr. 2019].

Genetics Home Reference. (2019). What is DNA?. [online] Available at: https://ghr.nlm.nih.gov/primer/basics/dna [Accessed 9 Apr. 2019].

Genetics Home Reference. (2019). What is a chromosome?. [online] Available at: https://ghr.nlm.nih.gov/primer/basics/chromosome [Accessed 9 Apr. 2019].

D. Keane, "Will the Somerton Man mystery ever be solved?," ABC News, 01-Dec-2018. [Online]. Available: https://www.abc.net.au/news/2018-12-01/will-the-mystery-of-the-somertonman-ever-be-solved/10420794. [Accessed: 10-Apr-2019].

Reference

Ncbi.nlm.nih.gov. (2019). rs12913832 RefSNP Report - dbSNP - NCBI. [online] Available at: https://www.ncbi.nlm.nih.gov/snp/rs12913832#clinical_significance [Accessed 14 Apr. 2019].

"Difference Between DNA and Genes | Definition, Structure, Features, Comparison," Pediaa.Com, 16-Feb-2017. [Online]. Available: https://pediaa.com/difference-between-dna-andgenes/. [Accessed: 12-Apr-2019].

Thank you

of ADELAIDE

CRICOS PROVIDER NUMBER 00123M