THE UNIVERSITY of ADELAIDE

Sonia Kleinig (a1740773) Hien Long Nguyen (a1798520)

Supervised by Derek Abbott and Mohsen Dorraki

CAN WE TEACH A MACHINE TO BE A CARDIOLOGIST?

adelaide.edu.au

Outline

- Introduction
 - Project Aims and Motivation
 - Background
 - Project Methodology
- Method
 - Data Pre-Processing
 - Feature Extraction
 - Machine Learning Classification
- Results
 - Our Results
 - Comparison with Literature
- Conclusion

Introduction

The Big Picture

- Among Australia's leading health problems
 - 1 in 6 live with CVD
 - Causes 1 in 4 deaths
- Often preventable with lifestyle changes
- Hence, important to diagnose early and accurately

Source: <u>https://www.heartfoundation.org.au/</u> activities-finding-or-opinion/key-stats-cardiovascular-disease

Project Aim

- Find good method of classifying heart conditions
 - Data pre-processing
 - Machine learning (ML) to classify
- Experiment with different methods
- Summarise findings

Image source: https://www.firstbeat.com/en/blog/what-is-heart-rate-variability-hrv/

Electrocardiograms

- Electrical signal produced by the heart
- Important in diagnosing heart disease
- Easily collected \rightarrow place electrodes on skin
- Can be processed like any other digital signal

Image source: https://ecgwaves.com/course/the-ecg-book/

Atrial Fibrillation

- Atria contract rapidly
- P-wave replaced with disorderly tremor waves
- Variable heart rate
- Characterised by palpitations, shortness of breath and chest pain
- Incidence increases with age

ECG data source: <u>https://www.physionet.org/content/challenge-2017/1.0.0/</u>

Background on Machine Learning

- Application of AI
- Algorithms:
 - Parse data
 - Learn from it
 - Make informed decisions
- Split data: training and test sets

Source: https://hbr.org/2020/05/harnessing-artificial-intelligence

Project Methodology

Pre-Processing and Feature Extraction

ECG Noise

Baseline wander and motion artifact

Muscle contraction

Wavelet Denoising

- Wavelets form orthonormal basis
 - Similar to sinusoids in Fourier analysis
- Can decompose signals
 - Denoise by applying threshold to coefficients
 - Separate signal and noise in ECGs better than sinusoids
- Time-frequency representation of signal

Moment of Velocity

- Like "instantaneous frequency" (IF) of a signal
- But more robust to noise than IF
- Found it highlighted QRS complex, but obscured other features
 - Hence poor results

The University of Adelaide

Feature Extraction

- Time domain
 - Heart rate variability
- Frequency domain
 - Instantaneous frequency
 - Spectral entropy
- Time-frequency domain
 - Scalogram
- Others
 - Statistical features, signal quality, etc.

Scalograms

- Graphical time-frequency signal representation
 - Relatively regular for normal ECGs
 - And strong response around 1 Hz
 - Irregular pattern for abnormal conditions
- Images good for CNNs
- No manual feature
 extraction required

Normal Signal

Machine Learning Classification

Support Vector Machines

- Class separation based on feature extracted
- Well-demonstrated for ECG classification
- Features used:
 - Heart rate variability (HVR)
 - Multi-type features

Image adapted from: <u>https://www.sciencedirect.com/science/article/pii/B9780128113189000272</u>

Convolutional Neural Networks

- Good for images
 classification
- No need for manual feature extraction

Convolution graphics source: <u>https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53</u>

Transfer Learning

Long-Short Term Memory Networks

- RNN well-suited to time-series data
- Have ability to keep
 or forget information
- Features improve
 performance
 - Used IF and entropy
 - Not the best choice
- BiLSTM

Image sources: (top) <u>https://towardsdatascience.com</u> (bottom) <u>https://medium.com/</u>

Results

Classifier Performance

- Accuracy can be misleading
- Used F1-Score instead
 - Geometric mean of precision and recall
 - Better measure of performance

Accuracy: 99.8% Precision: (99.8% + 0%)/2 = 49.9% Recall: (100% + 0%)/2 = 50% F1-Score: 49.9%

Comparison of Methods

F1-Score of Different Classifiers and Pre-Processing Methods 0.9 0.8 0.7 0.6 F1-Score 0.3 0.2 0.1 0 SVM HVR SVM LSTM CNN ■ Raw ECG ■ Wavelet ■ MoV

Comparison to Literature

Author	Pre-processing	Features	ML Classifier	F1-Score
M. Rashed-Al- Mahfuz et al.	Segmentation and CWT	Scalogram	CNN	99.9%
S. Saadatnejad et al.	Wavelet transform	RR interval	LSTM network	95.5%
S. Celin and K. Vasanth	Bandpass filter	Time-domain	SVM	85.7%
M. Kropf et al.	Feature-detection algorithms	QRS detection, time-domain	Random forest	81.0%
T. Wang et al.	Filtering, CWT, segmentation	Scalogram	CNN	68.8%
Our results	Wavelet denoising	Time-domain	SVM	79.3%
Our results	Wavelet denoising	Scalogram	CNN	84.8%

Conclusions: so, can we teach a machine to be a cardiologist?

- Yes!
 - ML can accurately identify heart conditions
 - Our results demonstrate this
 - Fine-tuning could improve results
- Possible future work
 - More appropriate pre-processing, feature extraction and classification techniques
 - Better combination of these
 - Extend to other heart conditions
 - Apply in hospital settings or in wearable devices, etc.

Thankyou!

Any questions?

THE UNIVERSITY of ADELAIDE

CRICOS PROVIDER NUMBER 00123M

Moment of Velocity

- The Hilbert Transform of a function of time is another function of time with different shape
- Given as:

$$y(t) = \mathbf{H}[x(t)] = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{x(\tau)}{t - \tau} \,\mathrm{d}\tau.$$

• Instantaneous frequency:

$$f(t) = \frac{1}{2\pi} \frac{d}{dt} \left[\arctan\left(\frac{H[x(t)]}{x(t)}\right) \right]$$
$$= \frac{x(t)(dH[x(t)]/dt) - H[x(t)](dx(t)/dt)}{x(t)^2 + H[x(t)]^2}$$

• MoV:

$$= x(t)\frac{\mathrm{d}\mathbf{H}[x(t)]}{\mathrm{d}t} - \mathbf{H}[x(t)]\frac{\mathrm{d}x(t)}{\mathrm{d}t}$$

Source: https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.182001

The University of Adelaide

SVM - HVR

Feature	Meaning	Unit
Heart rate	The number of heart beats per minute	bpm
Mean Interval	The mean value of beat-to-beat intervals	ms
SDNN	Standard deviation of beat-to-beat intervals	ms
SDSD	standard deviation of difference beat-to-beat intervals	ms
RMSSD	root mean square of beat-to-beat intervals	ms
NN50	the number of intervals that greater than 50 ms	du
pNN50	the percentage of intervals that greater than 50 ms	%
NN20	the number of intervals that greater than 20 ms	du
pNN20	the percentage of intervals that greater than 20 ms	%
ShE	shannon entropy of heart beats	du

SVM – Multi-type Features

Туре	Features	Number
Time Domain	SDNN, RMSSD, NNx	8
Frequency Domain	LF power, HF power, LF/HF	8
Non-linear Features	SampEn, ApEn, Poincaré plot, Recurrence Quantification Analysis	95
Signal Quality	bSQI, iSQI, kSQI, rSQI	36
Morphological Features	P-wave power, T-wave power, QT interval	22
	total	169

Tool provided by F. Andreotti: <u>https://github.com/fernandoandreotti/cinc-challenge2017</u>

SVM 169-Dimension Results

