

Nasser Khanezan Kuan Jun Wei

Supervised by Derek Abbott David Vowles

How much Energy Storage does Australia need?

adelaide.edu.au

Outline

- Introduction
- Project Aims and Motivation
- Data Collection and NEM network
- NEM Renewable Generation Video
- Project Methodology and Approach
- Result and Discussion
 - Energy Storage Option
 - Baseline Case
 - Optimized Case
 - Scaling Factor Case
 - Comparison for all cases
- Future work & Conclusion

Introduction : Project Aims and motivation

- Aim: to Gain perspective on how much energy storage is needed to ensure demand supply balance due to the intermittency of renewable energy sources.
- Motivation: A significant amount of renewable energy generation has been added since 2018. In 2019, 24% of Australia's electricity generation is from renewables.

Data Collection and NEM network

• Australian Energy Market Operator (AEMO)

NEW Renewable Generation by Type

NEM Renewable Generation Video

Project Methodology and Approach

- Collect Data from AEMO website, wind, solar, rooftop PV, and hydro power generation as well as power demand.
- Generate a graph to compare Total Power generation(GW) versus Power demand(GW) from March 2019 to April 2020.
- Calculate and plot Net power(GW) graph, such that Net power (GW) = Power generation(GW) Power demand(GW), for each time interval.
- Integrate the Net power (GW) graph, in order to obtain Energy storage required (GWh) graph for each time interval.
- The **highest value** in **Energy storage required (GWh)** graph is the battery capacity that is needed to meet the power demand and avoid power outages.

Energy storage option

Hornsdale Power Reserve

Discharging capacity and storage capacity are **150MW/193.5 MWh**

Snowy 2.0 pumped hydro scheme

Discharging capacity and storage capacity are **2GW/350 GWh**

Gordon Dam

Discharging capacity and storage capacity are **432 MW /4715 GWh**

Baseline case

Optimized case

100

Storage required ٠

Australia NEM Demand vs Optimized Energy source generation

Australia NEM (Wind x 7 + Solar x 7.7 + (rooftop PV + Hydro) x 1)Generation (GW)

Scaling Factor Case

- Storage required
 - = 6687.1 GWh

Highest discharging capacity required = 14.4101 GW

•

Comparison for all cases

	Baseline Case	Optimized Case	Scaling factor Case
Hornsdale Power Reserve	783979	43620 Σ Discharging capacity = 6543 GW	34559 Σ Discharging capacity = 5200 GW
Snowy 2.0 pumped hydro scheme	433	25 Σ Discharging capacity = 50 GW	20 Σ Discharging capacity = 40 GW
Gordon Dam	32.2	1.8 Σ Discharging capacity = 777.6 MW	1.4 Σ Discharging capacity = 604.8 GW
	power deficient always exists, no limit of battery storage capacity	Ideal Case	Less feasible

Future work

- Further optimization is required
- Use data from bureau of meteorology to determine the optimal locations for the required renewable solar and wind farms.
- Conduct financial analysis of over installing renewables for investment purposes.

Conclusion

- Optimized case is the Ideal case
- Snowy 2.0 pumped hydro scheme is the best energy storage option

of ADELAIDE

Thank you for Listening

Any Questions ?

CRICOS PROVIDER NUMBER 00123M