THE UNIVERSITY of ADELAIDE

Richard Saing Jayden Hayward

Supervised by Derek Abbott

THE BALL BEARING MOTOR MYSTERY (142)

adelaide.edu.au

Outline

- Background Information
 What is the mystery?
 Description of the motor
 Disadvantages
- **Motivation**
 - Applications
 - **Purpose of study** •
- **Experiments**
 - What are we looking for?
 Simulation setup

 - **Physical setup**
- Management
 - **Budget**
 - Timeline
 - **Risk management**
- Conclusion

Background Information The Huber Effect

Pair of railway wheels

Steel axis

If current is applied across these wheels, then a *small force* begins to act.

When the wheels start to roll, the strength of this *small force* increases.

https://cdn1.vectorstock.com/i/thumb-large/38/75/pair-of-train-wheels-vector-20753875.jpg

Background Information Description of Bearing

https://upload.wikimedia.org/wikipedia/commons/3/30/BallB earing.gif

https://www.guora.com/How-do-ball-bearings-work-What-are-they-for

Background Information Description of Bearing

https://upload.wikimedia.org/wikipedia/commons/3/30/BallB earing.gif

https://www.guora.com/How-do-ball-bearings-work-What-are-they-for

https://www.youtube.com/watch?v=8E4_SQTBye4

Background Information Description of Motor

- High current is applied at opposite ends of the shaft.
- After giving the motor an initial spin, the motor will independently rotate in that direction.

https://www.electronicsweekly.com/blogs/engineer-in-wonderland/generalengineer-in-wonderland/ball-bearing-motors-a-mystery-2012-11/

Background Information Disadvantages

- Heats up
- Sparking occurs
- Very poor torque

https://d3vl3jxeh4ou3u.cloudfront.net/IISTD%20Damaged%20Wheel%20Bearing%20.jpg

Motivation

Application (MEMS)

- Make it smaller
- Increase reliability
 and velocity
- Less current
- No more overheating
- Use in Micro Electro-Mechanical Systems

https://internetofthingsagenda.techtarget.com/definition/micro-electromechanicalsystems-MEMS

Motivation Application (Micro Motor)

- Size in the order of microns
- Uses in the medical field

https://scienceprog.com/what-are-mems/

Motivation

Application (Micro pump and LOC)

Micro pump

- Can manipulate picolitres of liquid
 - Applications in the military

Lab on a Chip (LOC)

- About 1x1 cm in size
- All the operations in a normal lab
- Can run tests on a small amount of blood and duplicate DNA segments

https://singularityhub.com/2017/02/19/one-cent-lab-on-achip-can-detect-cancer-and-infections/

https://educalingo.com/en/dic-en/micropump

Motivation Purpose of This Study

- Better understand Huber effect
- Potentially unlock new potentials for MEMS
- Might give insight to today's technical problem

Experiments

What Are We Looking For?

- The electromagnetic force effect
- The thermal expansion effect
- The plasma discharge effect

Relationship between angular velocity and torque?

Experiment Simulation Setup

- Can create and simulate real or ideal situations
- Will be used to simulate the ball bearing motor in a frictionless environment
- Enable us to collect and compare data

https://d3vl3jxeh4ou3u.cloudfront.net/IISTD%20Damaged%20Wheel%20 Bearing%20.jpg

Experiment

Physical Setup

Experiment

Gallium

https://www.businessinsider.com/gallium-safe-metal-liquid-mercury-2016-5/?r=AU&IR=T

	Gallium	Galinstan	Francium	Mercury	Caesium	Bromine
Liquid near room temperature? (Melting Point)	(30°)	(10°)	(27°)	(-30°)	(-28°)	(-7°)
Not toxic?			X	X	X	X
Fit our budget?		\mathbf{X}	\mathbf{X}		\mathbf{X}	X

Management Budget

- Gallium (\$130 for 250g)
- Encoder wheel (\$70-\$100)
- Ball bearing races (\$5-\$10)
- Total (\$205-\$240)

Management

Timeline

Tasks	Start Date	End Date	Assigned to	Timeline	Status			
Ball Bearing Motor Mystery Project	1/3/19	10/11/19	JH & RS		Active	•		
Research	1/3/19	12/4/19	JH & RS		Complete	•		
HSW Inductions	22/3/19	29/4/19	JH & RS		Complete	•		
RA & SOP	15/3/19	29/4/19	JH		Complete	-		
Cost Management	15/3/19	12/4/19	RS		Complete	-		
Ball Bearing Motor Test	16/4/19	12/5/19	JH & RS		Upcoming	•		
COMSOL Simulation	19/4/19	12/5/19	JH & RS		Upcoming	•		
Gallium Experiment	13/5/19	7/6/19	JH & RS		Upcoming	•		
Deliverables								
Project Wiki	22/3/19	1/11/19	JH & RS		Active	•		
Proposal Slides	22/3/19	12/4/19	JH & RS		Complete	-		
Proposal Seminar	15/4/19	16/4/19	JH & RS		Active	•		
Thesis Draft	22/4/19	7/6/19	JH & RS		Upcoming	•		
Thesis Final	8/6/19	1/11/19	JH & RS		Upcoming	•		
Final Seminar	4/10/19	6/11/19	JH & RS		Upcoming	•		
Project Poster	4/9/19	1/11/19	JH & RS		Upcoming	•		
Project Exhibition 'expo'	6/11/19	7/11/19	JH & RS		Upcoming	•		
YouTube Video	6/9/19	8/11/19	JH & RS		Upcoming	•		
l Today								

Semester 1 ends

Management Risk (HSW)

- Ball bearings get too hot to touch.
 - Mitigated by leaving to cool and ensuring the ball bearings are cool to touch before handling.
- Sparks are likely to occur.
 - Mitigated by wearing safety glasses.
- High current from car battery passing through motor.
 - Mitigated by wearing safety gloves.

Management Risk (Project)

- Shipping may take longer than expected.
 - Mitigated by allowing more time to work on experiment.
- Simulation results differ from actual results.
 - Mitigated by simulating simple projects.

Conclusion

- On a large scale the motor is ineffective
- Has a lot of potential when made smaller
- Looking for the relationship between angular velocity and torque
- The motor will be simulated using COMSOL as well
- Motor will be modelled with the liquid metal Gallium
- See which theory the results support if at all.

Questions?

THE UNIVERSITY of ADELAIDE

CRICOS PROVIDER NUMBER 00123M