School of Electrical & Electronic Engineering

Secure Communication without Key Exchange

Honours Project 2013 Aleks Kojic Michael Parisotto

Supervisors:

Derek Abbott, James Chappell & Lachlan Gunn

Seminar Overview

- Objectives & Context
- Project Significance & Implications
- One-Time Pad in the KS Cipher
- Geometric Algebra 3D & 4D
 - Introduction
 - Analytical Work & C++ Program
 - CLUViz Demonstration
 - Summary
- Timing-Based Physical Layer Encryption
- Project Management
- Conclusion
- Question Time & Key References

Introduction

Symmetric Key Systems

The Double-Padlock Protocol

Kish-Sethuraman (KS) Cipher - The Double Padlock Protocol

What it would mean?

Project Significance & Implications

The One-Time Pad

Using a One Time Pad in the KS-cipher

What if Alice & Bob each had their own unique OTP? The initial Message is M

Using a One Time Pad in the KS-cipher

The XOR approach can be generalised to rotations in 2D

A Powerful Mathematical Tool

Ability to easily handle rotations in N-dimensions

$$v' = e^{\frac{ir\theta}{2}} v \cdot e^{\frac{-ir\theta}{2}}$$

De Moivre's theorem applies

Life Impact | The University of Adelaide

Image: apod.nasa.gov

Vector v is defined as $v = \overline{a_1 e_1} + \overline{a_2 e_2} + \overline{a_3 e_3}$ e_3 $e_1^2 = e_2^2 = e_3^2 = 1$ $i = e_1 e_2 e_3$ \boldsymbol{V} Anti-commuting, that is $e_1e_2 = -e_2e_1$ e_{2} e_1

Life Impact | The University of Adelaide

Initial Message Vector $\boldsymbol{m} = m_1 e_1 + m_2 e_2 + m_3 e_3$

Rotation Operators of Alice & Bob

 $R_A = e^{iv\theta/2} \qquad R_B = e^{iw\theta/2}$

 $\boldsymbol{m}_{final} = \widetilde{R_B} \widetilde{R_A} R_B R_A \boldsymbol{m}_{initial} \widetilde{R_A} \widetilde{R_B} R_A R_B$

$$R_A R_B - R_B R_A = -\sin\frac{\phi}{2}\sin\frac{\theta}{2} v \times w = 0$$

- C++ Program
- 4D Analytical Work

• Still wanted to explore and visualize 4D Rotations

Source: James Chappell

CLUViz Demonstration

- 3D CLUViz Program
- Proof of requirement for parallel rotation axes
 - Complexity of 4D Rotations

Geometric Algebra Summary

Information Theory revealed a hole in our approach Shannon's work on the capacity of a *Binary Symmetric Channel*

Secrecy Rate $\rightarrow C_s$

Alice's Information $\rightarrow X$ Bob's Information $\rightarrow Y$

 $C_s \leq I(X, Y)$

Found a new approach in Timing-based Physical Layer Encryption

Timing-Based Physical Layer Encryption What is it? How can it be used?

Practical Setup

0.3630.407

0.356

0.333

 $0.565 \\ 0.345$

Timing-Based Physical Layer Encryption

Bit Stream Generation

→ 110010....

 $rtt(i) > median \rightarrow 1$

 $rtt(i) < median \rightarrow 0$

Timing-Based Physical Layer Encryption Bit Parity Checks Alice 10 01 11 01 \rightarrow 1 0 1 **Bob** 11 01 10 10 \rightarrow 1 0 1 $Eve \quad 01 \ 01 \ 00 \ 11 \rightarrow 0 \ 0 \ 0$

Bit Parity Checks

Matlab Analysis of Output

📣 Comparison Tool - D:\Uni\Honours\	testing1.bd vs.	D:\Uni\Honour	s\testing2.bd				
COMPARISON VIEW							
		2					
Save As 🗸	\Leftrightarrow	0					
New Refresh Swap Print	🔍 Find 💌	Comparison					
COMPARISON	NAVIGATE	HELP					
3/ differences found. Use the toolstrip buttons to navigate to them.							
5 1100001011100111101001	010101100	0010101100	10101001101111110000010110001010010101 . 1100001011100111101001001010101				
ε 1100110000111111011010	111010011	0111111000	010110000011000010101010100100101010000 . 11001100				
7 1011011000110010011110	101101111	0110111110	10101110100101011111001101101010101010				
<u>8</u> 110101001100100000011	110100111	0101011111	$01001111111101001000010000100001110001 \times 11010100100000001111110100111010111111010$				
9 1110101111110101011011	110010001	1110101111	00001111110010101010101010101100011 . 1110101111101010110110100001111000011111				
10 1000101011111010010000	0010101101	1011010011					
	0111100100	0000110000					
12 1110001110110100011101	0001001110	0111110110					
14 0010111110001010100011	000100100	0111110000					
15 0010011110001010101011110	111101000	1001110000					
16 11100100111111111100111	100100010	0000011010					
17 0101001110001011011000	000001111	0001100001					
18 01111000010010100001110	.010000011	0101101100	10000000001000011101101010100101111011 × 0111100001110001000				
19 0010101101011100000101	001001101	1011111111	101001011000100101010101010101010000000				
20 0010010111000101100110	111010110	1010100100	00111110001101000011000010011110110010 × 0000010111000101101111010110101001000001111				
21 1110110010110011101100	000000110	0110000011	01111000010100010111101000110010111011 . 1110110010110011101100000000				
22 1010011011110110101101	000001000	0111101111	11111100110100111001001100001111101010 . 1010011011110101010				
	-						
	In	le leng	th of the two bit streams is 14324				
	Th	e numb	er of errors between the two bit streams is 195				
	Th	e BER	between Bob and Alice is 1.361%				
	fx >>						
		8					

Matlab BER Results

Application

Risk Management Evaluation

Risk	Likelihood	Severity	Avoidance/Mitigation Strategies
Unavailability of Team Member	Low	Medium	Both members are well versed in each aspect of the project and the overall progress.
Loss of work	Very Low	Low	Group members will ensure that all progress is shared via the wiki, Facebook and through email so that we have several working copies available.
A Lack of Technical Knowledge	Low	High	We'll need to ensure that we're maintaining communication with each other and our supervisors to make sure that we understand the technical elements of the project
Falling Behind Schedule as a result of the increased complexity of the project.	Low	Medium	Re-evaluate our expectations of the project, and perhaps increase the focus in lower dimensions (such as 4, 5 and 6) before even considering the higher dimensions.
Not finding a solution for keyless encryption	Very High	Very Low	Ensure that out work is completely documented, so that regardless of what we've found we have something to show at the project closing.

Initial Project Schedule

Resulting Project Schedule

Team Management & Organisation

Conclusion

- Geometric Algebra and Physical Timing Based Encryption
 - Appreciation for Cryptography

Questions

Key References

- [1] L. Kish and S. Sethuraman, 'Non-breakable Data Encryption with Classical Information', http://ee.tamu.edu/~noise/research_files/new_encryption.pdf
- [2] L. Kish and J. Bergou, 'Absolutely secure QKD Scheme with no detection noise, entanglement and classical communication', *http://arxiv.org/pdf/quant-ph/0509097.pdf*
- [3] L. Gunn 'Physical-layer encryption on the public internet: a stochastic approach to the KS cipher', *http://arxiv.org/pdf/1306.4174v1.pdf*
- [4] M. Gander and U. Maurer 'The secret-key rate of binary random variables', http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=394667

