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The Kish-Sethuraman (KS) cipher is a general protocol for secure communication with-
out key exchange. However, realization of the protocol is hitherto an open problem, as

the required mathematical operators have not been identified in the previous literature.
A mechanical analogy of this protocol can be seen as sending a message in a box using
two padlocks; one locked by the Sender and the other locked by the Receiver. In this
analogy the message remains secure at all times, and so we seek a mathematical repre-

sentation of this process. The XOR operation can be viewed as a rotation of a bit by 180
degrees, and so we extend this idea to general rotational operators of higher dimension.
We select Clifford’s geometric algebra for this task as it is a natural formalism to handle

rotations in spaces of any number of dimensions. A geometric interpretation of the pro-
tocol is attractive, as it may potentially provide a basis for intuitive reasoning regarding
its behaviour under noise.

Keywords: Kish-Sethuraman, classical communication, geometric algebra, double pad-

lock
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1. Introduction

Various schemes exist to maintain secure information channels that exploit physical

phenomena such as quantum effects1,2 (eg. indeterminacy, entanglement) or even

classical chaos2,3,4,5. All existing schemes involve, one way or another, the sharing

or exchange of a cryptographic key. The open question we address in this paper is:
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can secure transmission be achieved without any form of key exchange, and if so,

which property can be exploited to achieve this?

The Kish-Sethuraman cipher (KS-cipher) is an idealized protocol that appar-

ently achieves the goal of avoiding key exchange6,7,8. However, this protocol has

not yet been realized, as the appropriate property, with a supporting mathematical

description, has not yet been identified. Here, we pursue this idea employing higher

dimensional rotation operators, and hence a natural mathematical formalism within

which to explore such ideas is Clifford’s geometric algebra.

First, let us briefly review the Kish-Sethuraman cipher protocol, using a me-

chanical analogy. Suppose Bob wishes to transmit a written message to Alice; Bob

hides the message in a box that he securely padlocks before sending it to Alice.

After receiving the box, Alice adds a second padlock and sends the box back to

Bob. Then Bob unlocks his padlock, leaving the box still secured by Alice’s lock,

and sends it back to Alice who can then remove her lock, open the box and read

the message as shown in Fig. 1.

This KS-cipher protocol is perfectly secure because both Bob and Alice keep

their keys undisclosed so that at all times the box is locked by at least one padlock,

thus no information is leaked or shared7. Hence we can say that in the physical

world, a completely secure classical protocol is conceptually possible. In practice,

a physical box can be broken, however, what is important to our analysis is the

security of the lock protocol.

The significance of a mathematical protocol simulating the double-padlock prob-

lem is that it would potentially underpin a relatively simple method of secure in-

formation transmission without key exchange.

Fig. 1. The double padlock protocol of Kish and Sethuraman. Bob firstly locks the box and sends
it to Alice. Then, once received, Alice also padlocks the box with a second lock and sends it back
to Bob. Finally, Bob unlocks his padlock, and sends the box back to Alice who can then remove

her lock, open the box, and read the message. The message appears perfectly secure because at
all times it has been secured by at least one lock.
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2. Analysis

Firstly we note that the ordering of the padlocks commutes, that is, Alice and

Bob can take off or add their padlock in any order. This is one of the primary

aspects of the protocol that permits it to work and hence we are looking to find

two mathematical operations that can be applied by Alice and Bob that commute.

We can immediately identify an example of this in the case of two-dimensional

rotations. Two dimensional rotations can also be seen as generalization of the bit

flip operation on binary strings.

For example, the message Bob wants to secretly send could be the value θ. Bob

‘hides’ θ by adding a random angle ϕ1 (his ‘key’) to it and sends it to Alice. Then

Alice adds another random angle ϕ2 (her ‘key’) and sends it back to Bob. Then

Bob undoes his secret rotation ϕ1 and returns the message to Alice. Then Alice

undoes her rotation ϕ2 and recovers the original value of θ. These operations are

most elegantly analyzed in two-dimensional Clifford geometric algebra (GA), where

we have a message vector m = m1e1 +m2e2, using e1 and e2 as orthogonal basis

elements and producing the bivector iota ι = e1e2. Acting on the message vector

with a rotor R = eιϕ produces a rotated vector

m′ = Rm = eιϕm, (1)

where m′ = m′
1e1 + m′

2e2, analogous to rotations in the Argand plane. Therefore

ϕ in this case represents the private key and rotates the vector m by a clockwise

angle ϕ. Refer to the Appendix for a brief summary of these operations that utilize

geometric algebra. Therefore, after the operations by Alice and Bob we find

mfinal = R̃AR̃BRARBm = R̃ARAR̃BRBm = m, (2)

where because the rotation operators commute and R̃ARA = R̃BRB = 1, we recover

the initial message. The message (the angle with the e1 axis say) can be recovered

from cos θ = m · e1/|m|, where the vector length |m| =
√
m2.

While this process indeed hides the message at each stage, an eavesdropper,

Eve, by comparing the successive intermediate transmissions, can deduce the inter-

mediate rotations and hence discover the two keys (ϕ1 and ϕ2) thereby unlocking

the message. That is, intercepting two consecutive transmissions, which consist of

two-dimensional vectors, Eve can easily calculate the rotation angle between them

from m2 = eιϕm1, which can be rearranged to give eιϕ = m2m
−1
1 . The inverse of a

vector being easily calculated when it is represented in geometric algebra, as shown

in the Appendix.

In order to circumvent the vulnerability of two-dimensional rotations we now

explore the use of rotations in three dimensions. In this case, given an initial and

a final rotated vector it is not possible to simultaneously deduce the rotation axis

and rotation magnitude, as only a plane of possible rotation axes can be found, and

hence, with a single usage, secure against an eavesdropper. In three dimensions, let

the message vector m = m1e1 +m2e2 +m3e3 and define the trivector i = e1e2e3,
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which commutes with all multivectors and has i2 = (e1e2e3)
2 = −1. Acting on the

message vector with a rotor R = eiv̂ϕ/2 produces a rotated vector

m′ = RmR̃ = eiv̂ϕ/2me−iv̂ϕ/2, (3)

where m′ = m′
1e1 + m′

2e2 + m′
3e3, and v̂ represents the unit rotation axis vector

in three dimensions and ϕ a clockwise rotation magnitude in radians. We have also

defined the reversion operation, which inverts the order of all algebraic products,

that is, R̃ = e−ιv̂ϕ/2. Therefore ϕ and v̂ represents a key with three degrees of

freedom. So given two rotors selected independently by Alice and Bob RA = eιv̂ϕ/2

and RB = eιŵθ/2, we have an encryption process

mfinal = R̃AR̃BRARBmR̃BR̃ARBRA. (4)

In order for this process to succeed we require RA and RB to commute, however

RARB −RBRA = − sin
ϕ

2
sin

θ

2
(v̂ŵ − ŵv̂) (5)

= − sin
ϕ

2
sin

θ

2
v ∧w.

This implies v ∧w = 0, or that v and w are parallel, or the rotation angles ϕ = 0

or θ = 0. However in order for Alice and Bob to use parallel vectors, a preferred

direction would need to be communicated, reducing this to the 2D case

Hence, in three dimensions, while rotations are a secure form of encryption, in

order for the rotation operators of Alice and Bob to commute they need to agree on

a preferred direction, which reduces the degrees of freedom in the keys equivalent

to the 2D case. Thus, in order for rotational operators to commute it appears that

we need to implement the rotations within a higher dimensional space.

2.1. Four dimensional rotations

Rather than proceeding immediately to a more complex four dimensional Cartesian

space, we can use instead a known result from quaternion theory9, that a 4D rotation

can be made isomorphic to a bilinear quaternion operation

q′ = er⃗qes⃗ (6)

where we have the vector quaternions r⃗ = r1i + r2j + r3k, s⃗ = s1i + s2j + s3k, and

where we represent a four vector with the full quaternion q = v1 + v2i + v3j + v4k.

The quaternions defined through the usual relations i2 = j2 = k2 = −1 = ijk with

i, j, k anticommuting.

Now, there is a well known isomorphism between quaternions and the even sub-

algebra of the three-dimensional GA. That is, in GA we can represent quaternions

as i → e2e3, j → e1e3, k → e1e2, and hence we can now express Eq. (6) as

y + iy4 = eiv(x+ ix4)e
iw, (7)

where v,w,x and y are three vectors, and where we can define a 4D message vector

as m = m+ im4 = m1e1 +m2e2 +m3e3 +m4e1e2e3. Hence Bob (and similarly for



October 13, 2013 14:55 WSPC/INSTRUCTION FILE
DoublePadlock˙Hotpi

The double-padlock problem: is secure classical information transmission possible without key exchange? 5

Alice) has an encryption operator of the form m′ = eivmeiw, where v,w are three

vectors. Hence the full encryption process, from Eq. (4), will be

m′ = e−ixe−iveixeivmeiweiye−iwe−iy. (8)

Now, referring to our previous result for 3D, from Eq. (5), these operations will only

commute if the rotation axes, v,x and w,y are parallel. Hence, once again, this

encryption process will be insecure due to having insufficient degrees of freedom.

2.2. Discussion

A possible argument why further exploration in higher dimensional spaces may not

yield the required result is by viewing the situation from an information-theoretic

standpoint, as follows. Suppose Alice, Bob, and Eve have access to random variables

X,Y, and Z, with joint distribution PX,Y,Z . Maurer10 provides an upper bound

on the secrecy rate

Cs ≤ I(X;Y ), (9)

where I(X,Y ) is the mutual information of X and Y . In the Kish-Sethuraman

cipher, Alice and Bob do not have access to any shared form of randomness, merely

their own random number generators. That is to say, X and Y are independent,

and therefore I(X;Y ) = 0. The secrecy rate is therefore equal to zero from Eq. (9),

and the protocol thus lacks information-theoretic security. This argument is a non

constructive proof of why a protocol without key exchange must fail, however a

constructive proof in terms of N -dimensional rotations would still be a useful result.

2.3. Conclusion

In conclusion, in this paper, through investigating higher order rotations, we at-

tempt to solve the double padlock problem, which would provide a set of working

mathematical operators for the Kish-Sethuraman (KS) cipher that is a classically

secure protocol. However, while possible conceptually, in practice it appears that

we are blocked on information-theoretic bounds, see Eq. (9). Nevertheless it would

be of interest to pursue solutions in higher dimensional spaces in order to discover,

if possible, a constructive proof for this result in terms of N -dimensional rotations.

The encoding of these multidimensional operations onto real signals also remains

an open question for further study, and it is worth noting that various multidimen-

sional spaces are already exploited by engineers in standard communications theory,

for example see El-Hajjar et al.11

Whilst KS-scheme in higher dimensional space may not offer ultimate security,

it may be of benefit for providing a layer of partial security in conjunction with

other schemes. Also, while it is of interest for future work to explore how to phys-

ically encode higher dimensional rotations on a wireless carrier signal, the scheme

has wider implications. For example, Klappenecker has conjectured a connection

between a mathematical realization of the KS-cipher protocol and the P versus NP
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problem in computer science8. Thus it may be of interest to explore implications of

the KS operations developed in this paper on the P versus NP problem.

If a mathematical protocol can be encoded on a wireless carrier or fiber optic

signal, a benefit would be communication, with some degree of security, without

key exchange and the promise of a relatively simple physical realization.

Whilst this paper indicates that moving to higher dimensional spaces apparently

does not assist the KS-cipher protocol, this has motivated us to pursue a different

KS implementation based on exploiting stochastic message transmission times12.

Nonetheless, this geometric interpretation has potential value in the analysis of

such protocols on noisy channels.

Appendix A. Geometric algebra representation of vectors

In order to represent the three independent degrees of freedom of physical space,

Clifford defined an associative algebra consisting of three elements e1, e2 and e3,

with the properties

e21 = e22 = e23 = 1 (A.1)

but with each element anticommuting, that is ejek = −ekej , for j ̸= k. We also

define the trivector i = e1e2e3, which allows us to write e2e3 = ie1, e3e1 = ie2 and

e1e2 = ie3. The highest grade element we also call the pseudoscalar.

Now, given two vectors a = a1e1+a2e2+a3e3 and b = b1e1+ b2e2+ b3e3, using

the distributive law for multiplication over addition13, as assumed for an algebraic

field, we find their product

ab = (a1e1 + a2e2 + a3e3)(b1e1 + b2e2 + b3e3) (A.2)

= a1b1 + a2b2 + a3b3 + (a2b3 − a3b2)e2e3

+(a3b1 − a1b3)e3e1 + (a1b2 − a2b1)e1e2,

where we have used the elementary properties of e1, e2, e3 defined in Eq. (A.1).

Recognizing the dot and wedge products, we can write

ab = a · b+ a ∧ b. (A.3)

We can see from Eq. (A.2), that the square of a vector a2 = a · a = a21 + a22 + a23,

becomes a scalar quantity. Hence the Pythagorean length of a vector is simply

|a| =
√
a2, and so we can find the inverse vector

a−1 =
a

a2
. (A.4)

These results can easily be adapted for a space of any number of dimensions. In odd

dimensions the pseudoscalar is commuting, but in even dimensions it is anticom-

muting. In dimensions {2, 3}, {6, 7}, {10, 11}, . . . the pseudoscalar squares to minus

one, while in dimensions {4, 5}, {8, 9}, {12, 13}, . . . it squares to positive one.
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