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Abstract 

Electrocardiograms (ECGs) are recordings of the electrical activity of the heart, and 

play an important role in the diagnosis of many cardiac abnormalities. Recently, there 

has been an interest in finding methods of classifying ECGs using machine learning 

(ML) techniques. Two major steps are involved with this: pre-processing and 

classification. Pre-processing techniques, including bandpass filtering and wavelet 

transforms, are used to reduce noise and extract relevant features from the signal. 

Then classification is able to be done using a range of techniques including SVM and 

CNN. First, a set of signals with known classification are used to train the ML, and 

then another set of test signals are used to examine the accuracy of the classifier. This 

thesis begins with a literature review of previous works in this and related areas. 

Then, these techniques are examined by making modifications to an existing 

classifier. So far, a classifier using wavelet de-noising and an SVM has been modified 

to fit with data collected from the PhysioNet Database [2]. Although this classifier is 

able to achieve an accuracy of almost 98% with the example data, only accuracies of 

70% or less have been achieved with the collected data. Further modification and 

optimisation of parameters over the remainder of the project should see improvements 

in this area. As well as viewing ECGs in the time domain, time-frequency plots 

known as scalograms have been created. Another classifier which may be able to 

classify the ECGs from their scalograms by utilising a CNN has been identified, 

although analysis of this, and other classifiers, are yet to be completed. 
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1. Introduction 

1.1. Motivation and Significance 

Biomedical signals, such as electrocardiograms (ECGs), can reveal unseen details 

about a patient’s health. Hence, it is critical to use these signal to quickly and 

accurately detect abnormalities to facilitate timely treatment. 

According to the World Health Organisation (WHO), cardiovascular disease (CVD) 

continues to be the leading cause of death globally [1]. CVDs can take many forms, 

and can exist for a number of reasons including behavioural factors, and underlying 

health conditions [1]. Since most CVDs can be prevented by managing behavioural 

risk factors, including smoking and unhealthy diet [1], identifying and addressing 

them is important. 

CVDs generally have some impact on the rhythm of the heart which can be identified 

from an ECG recording, making them a useful tool in identifying heart diseases. 

Hence, analysing these quickly and correctly is important, and has led to an interest in 

using machine learning (ML) techniques to identify heart abnormalities, and even 

classify the type of abnormality. 

This project examines the possibility of using standard ML techniques, programmed 

in either MATLAB or Python, to identify various CVDs. Although this project has no 

official sponsor, this and similar work could prove invaluable in the biomedical field. 

1.2. Project Aims 

The aim of this project, Can we Teach a Machine to be a Cardiologist?, is to explore 

various machine learning techniques to determine whether they can be used to teach a 

machine to correctly classify CVDs. The project will involve developing a ML 

algorithm which extracts the relevant features of an ECG, learns which features 

correspond to which condition, and then accurately classifies other ECG signals 

according to these feaures. 

An exploration of different techniques will reveal which processes are most able to be 

used to achieve this goal. The effectiveness of each will be compared, and these 

results will be compared to the results recorded in the literature, with the aim of 

achieving an outcome which is comparable to those. 
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1.3. Project Scope 

The project will identify a number of ML techniques which can be used to classify 

signals and examine as many as possible in the given timeframe. These techniques 

will be chosen based on their effectiveness, how easily they can be understood, and 

whether existing coded examples can be accessed and modified. 

This project requires the analysis of ECG recordings. Thankfully, numerous databases 

with an extensive collection of ECG recordings are available online, so no 

experiments will need to be conducted to collect data. The PhysioNet database [2] has 

been used for all work so far. 

1.4. Budget 

The budget allocated for this project is equal to $250 per student, meaning the total 

budget is $500 for this project. Data, such as ECG recordings, are available for free 

online, and all required software and journal articles are available through the 

University already. So, none of these items are required expenses. 

As the MATLAB computations can be quite intensive, the possibility of purchasing 

more RAM for a PC is being investigated. If this is approved, the cost will be 

approximately $200, leaving $300 unspent. Table 1 summarises the current financial 

situation of the project. 

Table 1: Summary of Budget 

Expense Amount ($) Total ($) 

Project Budget +500 500 

Total Income 500 

Data (ECG Recordings) 0 0 

Software (MATLAB/ 

Python) 

0 0 

Journal Articles 0 0 

RAM -200 (approx.) 200 

Total Expenses 200 

Budget Remaining 300 

At this stage, it is worth ensuring excess budget in case expenses are revealed at a 

later point. 
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1.5. Background Information 

This thesis will discuss a number of technical topics. These come under three broad 

subjects: ECG analysis, pre-processing methods, and machine learning. These topics 

will be briefly explained here, and further information can be found in the sources 

referenced. 

1.5.1. Electrocardiogram Analysis 

In the human body, the contraction of muscles is associated with changes in the 

membrane potential of cells, i.e. depolarisation [3]. ECGs measure this electrical 

activity in relation to the heart. These measurements are obtained by placing 

electrodes on the patient’s torso and measuring the electrical activity produced. 

Any irregularity in the ECG waveform could be indicative of a CVD or other 

abnormality. The challenge lies in identifying these abnormalities, particularly since 

ECG recordings naturally vary person to person [4], and the abnormalities can be very 

subtle. Hence, it is important to find a way to accurately identify irregularities and 

classify the signal accordingly. 

Figure 1 shows an idealised ECG signal. A number of points on the ECG are of 

particular importance. Namely, the P-wave, the QRS complex, the T-wave and the 

interval between subsequent R-peaks (RR interval). 

 

Figure 1: Simplified ECG signal [5] 

The P-wave corresponds to the contraction of the two smaller chambers of the heart, 

the atria. The QRS complex following represents the contraction of the two larger 

chambers of the heart, the ventricles. This is the contraction that pushes the blood out 
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of the heart and around the body. The T-wave then represents the repolarisation 

(return to resting state) of the ventricles (note the repolarisation of the atria is hidden 

in the QRS complex) [3]. Finally, the RR interval represents the length of time 

between subsequent heart beats. 

Quick analysis of the RR interval can reveal whether or not a patient’s heart is beating 

in a regular rhythm and may point out an arrhythmia if not. Conversely, it is more 

difficult to determine whether the pattern of P-waves, QRS complex and T-waves are 

abnormal. This is made difficult by normal variability of ECG features, both within 

and between patients [4]. Furthermore, electrical activity of other muscles must be 

taken into consideration when analysing an ECG recording. 

The databased used here (the PhysioNet 2017 Computing in Cardiology Database [2]) 

contained four types of signal: normal, atrial fibrillation (AF), other arrhythmia, and 

noisy. Hence, it was important to gain a quick understanding of each. 

Normal signals have the characteristic waveform as in Figure 1, although this does 

have variations from patient to patient. Each feature should have a duration within a 

specified range, and the RR interval should be fairly constant. 

AF is an abnormal condition in which the regular atrial activity has been replaced 

with fast and disorderly tremor waves [6]. The normal P-waves often disappear, and 

the distance between R-peaks varies. The incidence of AF increases with age, and can 

be characterised by palpitations, shortness of breath and chest pain.  

Figure 2 compares an ECG with AF with a normal ECG rhythm.  

 

Figure 2: (a) Atrial fibrillation ECG waveform in comparison to (b) normal ECG [6] 
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Other arrhythmia describes any other abnormal condition. This can include congestive 

heart failure, a range of blockages, or any other arrhythmia. Noisy signals are 

classified as signals which contained too much noise to be accurately classified into 

another class. 

1.5.2. Pre-Processing Techniques 

Pre-processing of a signal is required prior to analysis to remove artifacts and noise 

which may impede the classifier. The important features of an ECG are relatively 

low-frequency (0.5-30 Hz) [6], so much of the high frequency content of the signal is 

noise which can be removed with filtering [7]. 

The ECG is unable to distinguish heart activity from other electrical activity in the 

chest, so other muscle contraction may also be recorded. These are known as artifacts, 

and may include any muscle movement or slow oscillations from breathing, for 

example, at the time of ECG recording. 

A number of pre-processing techniques exist, including bandpass filtering and 

wavelet denoising. A brief introduction to wavelets is included here. 

Wavelets form an orthonormal basis. This means they can be used to apply a wavelet 

transform to a time-domain signal to transform it into the wavelet domain in much the 

same way a set of sinusoids can be used to transform a time-domain signal into the 

frequency domain, as in the Fourier transform (FT). However, the FT provides only 

globally averaged information, meaning transient and location-specific features are 

often lost [3]. Wavelet transforms, on the other hand, allow for time and frequency 

analysis of a signal simultaneously, which allows transient and intermittent 

components to be localised. 

It is possible to obtain a similar result by utilising a short time Fourier transform 

(STFT) [8]. This computes the FT of a signal in smaller time windows and can be 

used to plot an image known as a spectrogram (see Figure 3). However, wavelet 

transforms do a better job of this since they apply a window of varying length to the 

signal [3] [8]. This allows the transform to adapt based on the frequency components 

of the signal, which is much more difficult to do with FTs. The time-frequency plot 

produced by the wavelet transform is called a scalogram, and an example is shown in 
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Figure 4. Notice that it is similar to the STFT spectrogram, but provides more 

information, particularly at higher frequencies. 

 

Figure 3: Example spectrogram 

 

Figure 4: Example scalogram 

Furthermore, a number of different wavelets may be used. The most popular of these 

are shown in Figure 5. The type of wavelet used for a given application can be chosen 

to best match the signal being analysed. Notice that some of these wavelets have a 

similar shape to the ECG waveform, and prove an invaluable tool in this case. 
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Figure 5: Common wavelets [9] 

1.5.3. Machine Learning Techniques 

ML is an application of artificial intelligence in which algorithms parse data, learn 

from it, and apply what they’ve learned to make an informed decision [10]. 

First, a few definitions are important to understand. Before it can be used as a 

classifier, ML algorithms must be trained in how they should classify that data. As 

such, a set of data must be divided into a ‘training set’ and a ‘test set’. The training set 

and the correct labels for each piece of data is given to the machine to teach it what 

each classification means. Then the test set is provided to verify how well the 

machine has learnt these classifications. The machine’s classifications can be 

compared to the actual label for each data to calculate the precision, recall and F1-

score for the algorithm. 

The following ML techniques have been identified: 

• Support vector machine (SVM); 

• Artificial neural network (ANN); and 

• Convolutional neural network (CNN). 

A basic description of each of these techniques is included here for readers who have 

not encountered these terms before. 

An SVM is a supervised machine learning algorithm which can be used to assign 

labels to data, based on the value of a number of features it possesses. Each data item 

is plotted in n-dimensional space, where ‘n’ is the number of features under 

consideration [11]. Then, the SVM draws a line, or in higher-order space a 
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hyperplane, which best separates the data in the training set into its known categories. 

The test set is then plotted in this n-dimensional space, and classified according to 

which side of the hyperplane it falls on. Figure 6 illustrates a simple 2D example of 

this concept, in which the solid line shows the plane between classes (red and blue in 

this simple case). 

  

Figure 6: 2-dimensional example SVM [12] 

An ANN is capable of extracting complex and non-linear relationships between 

features of a set of data [12]. They are constructed to simulate neurons in a biological 

nervous system, as depicted in Figure 7. It’s comprised of many interconnected units, 

whereby the network function is largely determined by the connections, and each 

connection is a certain nonlinear function. The weight of each connection determines 

its contribution, and these weights can be adjusted through training, either from 

outside information or in response to the inputs [13]. The network is built directly 

form experimental data and the ANN’s self-organising capabilities, and does not 

require prior assumptions [13]. 

Building on from ANNs, CNNs add some processing stages to the input of the neural 

network. They are especially helpful for classifying images, such as handwritten 

symbols as shown in Figure 8. The convolution layer extracts features, and the 

pooling layer reduces the size of these convolved features to decrease computational 

power [14]. These two layers enable the model to understand the features. Multiple 

convolution and pooling layers can be used to extract higher-level features than 

possible with a single layer. Finally, a fully-connected layer is used to classify the 

images, and this is generally a regular ANN [14]. 
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Figure 7: Example of an ANN for correlating certain properties with various parameters [13] 

 

Figure 8: CNN example [14] 

ANNs and CNNs both come under the category of deep learning. This is a subfield of 

machine learning in which algorithms are structured in layers to create the neural 

network. This makes it possible for the machine to learn through its own method of 

computing [14]. Conversely, basic ML requires human guidance to improve the 

process of its classifications, such as with the SVM. 
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1.6. Technical Challenges 

A number of technical challenges were identified. Perhaps the biggest, is the use of 

programming software. Both members have a basic understanding of MATLAB from 

previous years, but will need to continue to develop this knowledge in order to be able 

to complete the project. An alternative which may be more effective at processing 

data is Python. Neither member has used Python previously, however it was decided 

to attempt to learn this language and use MATLAB as a backup if this proves 

unsuccessful. Hence, although it is preferable to process large amounts of data using 

Python, completing all programming in MATLAB is acceptable. 

The project involves finding ML algorithms which can successfully classify ECG 

recordings, although neither member has previously worked in ML. This challenge 

has been mitigated by beginning research into ML concepts early, and by following 

coded MATLAB examples to get a deeper understanding of how these techniques 

work. 

Finally, ML algorithms can become quite complex to run, and as such the 

computational power and time available may present a challenge to this project. For 

example, a reasonably powerful computer (generally more than a laptop) is required 

to have enough processing power and RAM to run more complex algorithms. As 

such, alternatives such as using Adapt through the University and purchasing more 

RAM have been considered. 
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2. Literature Review 

2.1. Introduction 

From preliminary research, it was decided that the project would be split into two 

main objectives, namely pre-processing and classification. Hence, the literature 

review has a similar structure. The focus was directed at papers which applied these 

processes to ECG analysis, however papers which used these techniques for a 

different purpose were considered in some cases, especially where that application 

was also in the biomedical field. 

It was suggested that wavelet denoising be used in the pre-processing stage, and that a 

support vector machine (SVM) be used as a classifier. Hence the literature review 

began with a focus on methods which use these techniques, or which compare these 

techniques to others. Other approaches have also been compared. 

The literature review will cover the following topics: 

a. Available pre-processing techniques; 

b. ECG features and feature extraction techniques; 

c. The effectiveness of SVM classifiers; 

d. The effectiveness of CNNs as classifiers; and, 

e. Other classification methods and a comparison of their effectiveness. 

The findings for each of these points are discussed in the subsections of Section 2.2, 

and conclusions in relation to this project are drawn in Section 2.3. 

2.2. Findings 

The findings of the literature review can be divided into the three stages of pre-

processing, feature extraction, and classification. Although each stage will be 

discussed individually, it should be noted that most papers use one or more techniques 

in each stage. The effectiveness of each classification method is summarised in Table 

2. 
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2.2.1. Pre-Processing Methods 

Pre-processing is an important first step in classifying the ECG signals [7,15,16]. It 

removes undesirable features including noise, baseline wander, motion artifacts and 

other interruptions [15]. 

2.2.1.1. Noise Removal 

Noise removal can be done in a number of different ways. It can be as simple as using 

a bandpass filter, as in [6,17,18]. Wang et al. [18] used a number of different filters to 

pre-process the ECG recordings. These were a 50 Hz notch filter to remove the mains 

power hum, a 30Hz low-pass filter to remove high-frequency noise, and a 0.1 Hz 

Chebyshev high-pass filter to remove low-frequency noise and artifacts. 

Hu et al. [6] used a similar filtering process, with a digital FIR bandpass filter which 

had cut-off frequencies at 0.5 Hz and 30 Hz. The 30 Hz cut-off frequency could 

eliminate some electrical activity from the muscles, as well as the powerline 

interference. The 0.5 Hz cut-off was chosen to remove low-frequency artefacts due to 

respiration, electrode movement, and other low-frequency noise [6]. 

Alternatively, wavelet denoising can be used. The wavelet decomposition of a noisy 

signal concentrates the signal information across a few wavelet coefficients, without 

modifying the random distribution of the noise [9]. This meant denoising could be 

achieved by thresholding the wavelet coefficients. Another advantage of the WT is 

that it gave a time-variant decomposition, making it possible to choose different 

filtering settings for different time windows [9]. 

Adaptive filtering methods can be developed from Least Mean Square (LMS) and 

modified LMS-type algorithms [19]. The concept of these algorithms is to estimate 

signals which are corrupted with additive noise by minimising the mean squared error 

between the noisy ECG signal and a reference signal containing noise correlated to 

that in the ECG [19]. Venkatesan et al. [15] proposed a delayed error normalised 

LMS, which they find to be superior to both normalised LMS and delayed normalised 

LMS. Similarly, Khiter et al. [19] proposed a self-correcting leaky normalised LMS 

(SC-LNLMS), which applied multiple iterations of an adaptive noise canceller to 

further reduce signal noise. 
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2.2.1.2. Other Pre-Processing Steps 

Pre-processing can also include other steps, such as segmenting ECG signals 

[6,15,18,20,21,22,23], and heartbeat normalisation [22]. The length of signal segment 

can vary, with some methods using long signals (i.e. >30 seconds) [15,23], and some 

used 10 second intervals [18,20,21,22], or even less [6]. 

Multiple pre-processing steps could be combined to create a more robust pre-

processing method. Zhao et al. [22] used an FIR highpass filter to remove baseline 

drift and other low frequency noise. The signal was then decomposed into three levels 

by a biorthogonal spline wavelet, and a threshold was selected to remove the 

unwanted frequency components. The heartbeat of each signal was normalised to 75 

bpm to remove the effect of natural variations in heartrate. Finally, the quality of the 

signal was measured [22], to verify only clean signals were passed to the next stage of 

the classifier. 

2.2.2. Feature Extraction 

Feature extraction involves the analysis of raw data to extract relevant features. These 

features may then be used to classify a signal into a class with similar features, and 

distinguish it from classes with different features. For ECG signals, a number of 

different features are of interest. These may exist as either time-domain or frequency-

domain features, or even time-frequency features. 

2.2.2.1. Time-Domain Feature Extraction 

The detection of R peaks and/or RR intervals was a popular time domain feature to 

extract [6,17,24,25]. It was also reasonably common to detect the whole QRS 

complex [21,26], and some studies extended this to more features including the QT-

interval and P-wave duration [21]. The time between subsequent R-peaks corresponds 

to one heartbeat, so if the time between two R-peaks was inconsistent, this could 

indicate an abnormality [6]. 

Wang et al. [24] extracted the RR intervals (time between subsequent R-peaks) from 

their ECG data. They then compared subsequent RR intervals and the ratio between 

these. This data was one of two sets of data used to train and test their CNN (the other 

being spectrograms). Hu et al. [6] also examined the difference in RR intervals, 

although just for AF and normal ECGs. Their results showed that AF signals had an 
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RR interval half the length of a normal signal, and there was greater variance between 

the RR intervals. 

Bae et al. [25] discussed how a pair of derivative filters could be used to detect R-

peaks and the QRS complex. They also demonstrated a noise detection algorithm 

which could be used to exclude contaminated R-peaks. It was suggested that 

developing a technique to measure the reliability of detected R-peaks and calculated 

RR intervals may be just as important as developing a QRS algorithm with a higher 

detection rate [25]. The application of this research was for real-time detection of 

arrhythmias, in which case it was especially important to remove the unreliable RR 

intervals [25]. 

Numerous papers report on the use of a K-Nearest Neighbour (KNN) algorithm to 

detect R-peaks [17,21,26]. KNN is a type of instance-based learning in which an 

object is assigned to the class of its k nearest neighbours, where k is an integer. For 

the case where k = 1, the object is assigned the same class as its single nearest 

neighbour [17]. 

Using KNN to detect either R-peaks or the QRS-complex have proven successful. He 

et al. [17] achieved a peak detection accuracy of 99.43%, Saini et al. [26] achieved 

QRS detection rates of up to 99.89%, and in a different paper [21] accomplished 

results of 100% for detecting QRS duration, heart rate, QT-interval, P-wave duration 

and PR-intervals. 

The use of a method called the Pan-Tompkins algorithm has also been used to identify 

the QRS complex from ECG signals [4,20]. In this method, the signal is filtered and 

differentiated to remove noise and suppress the lower frequency components of the P 

and T-waves. Squaring further enhances the high frequency components, and a 

moving window integration extracts the slope of the R-wave [4]. Further threshold 

adjustment may be done to improve sensitivity. 

Finally, it is also possible to detect the RR intervals using wavelets. For example, 

Venkatesan et al. [15] uses a Coiflet wavelet to detect the RR interval and possible R-

peaks. Although wavelets are commonly used to extract features, they are mostly used 

to extract frequency or time-frequency information instead [4,8,24,27]. 
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2.2.2.2. Frequency-Domain Feature Extraction 

The main features of an ECG signal are contained within the frequencies of about 0.5 

Hz to 30 Hz [6,18], with components outside of this range largely corresponding to 

noise. 

Hu et al. [6] demonstrated that the maximum amplitude frequency component of an 

ECG may be an important feature. The maximum amplitude frequency component 

was consistently close to 1 Hz for normal signals, and much more volatile (ranging 

from 2 to 8 Hz) for ECG recordings with AF [6]. This study did only analyse two 

conditions, with no mention of whether or not this feature can be generalised to other 

abnormal conditions. 

ECG signals are non-stationary data, and as such, their instantaneous frequency 

changes with time [16]. This means their properties can’t be fully described just by 

using frequency-domain information [16]. Therefore, a means of combining this 

frequency information with time-domain information is required. 

2.2.2.3. Time-Frequency Analysis 

Spectrograms and scalograms are powerful tools in the analysis of ECG recordings 

[3,16,24,27]. They demonstrate how the frequency content of a non-stationary signal 

varies with time (refer back to Section 1.5.2 for further background information). 

Spectrograms and scalograms are important for this application as they can be saved 

as images for input in classifiers, such as the CNN [16,24]. 

Huang et al. [16] plotted spectrograms as 256×256 pixel images before using them to 

successfully train and test a CNN. These images were created using a STFT over 10 

seconds of a recorded signal. Rashed-Al-Mahfuz et al. [27] produced scalograms of 

segments of ECG signal as input to a VGG16-based CNN. The results were compared 

to ones obtained using a Hilbert-Huang Transform (HHT), in which case the 

scalogram overperformed the HHT in all cases. Wang et al. [24] also used the WT to 

produce scalograms of ECG signals, to use as one input to their CNN (along with RR 

interval information). 

Even without plotting a spectrogram, the WT can be used to decompose a signal into 

a series of wavelet coefficients [34]. Emanet [34] converted each signal into 265 

wavelet coefficients, and MathWorks [23] selected 190 features. The idea behind this 
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is to represent the signals as a smaller number of data points, and for the case of [23] 

this meant decreasing the points down from 65536 points to just 190. 

2.2.3. Classification with Machine Learning 

Machine learning techniques can be used to classify ECG signals, based on a number 

of learned features. Preliminary research identified a number of possible classification 

methods, namely: 

a. CNNs [16,24,27,28,29]; 

b. SVMs [15,23,30,31]; 

c. k-Nearest neighbour algorithm [22,32,33]; 

d. Random Forest algorithm [31,34,35,36]; and 

e. Decision trees [6]. 

This review focusses on the two most relevant, those being CNNs and SVMs, with the 

other techniques being discussed more briefly. 

2.2.3.1. Convolutional Neural Networks 

CNNs are a type of deep learning model commonly used in image and data analysis, 

as well as disease classification [29]. See section 1.5.3 for further background 

information. 

Huang et al. [16] reported an average accuracy of 99.00% with their 2D-CNN. This 

classifier used three layers of convolution and pooling. For comparison, they 

demonstrated a 1D-CNN which produced an accuracy of 90% when supplied with a 

similar sized test set. Wang et al. [24] also used a CNN with three convolution and 

pooling layers. Although they produced a high accuracy of 98.74%, the positive 

predictive value (PPV), sensitivity (SE) and F1-scores of their method were lower, 

with 70.75%, 67.47%, and 68.76%, respectively [24]. 

Rashed-Al-Mahfuz et al. [27] used a VGG16 architecture, which consists of a CNN 

with 16 layers in order to classify an input image. They found accuracy was improved 

when a CWT scalogram was used instead of HHT spectrum. The accuracy of this 

classifier was also dependent on the number of classes to be distinguished between. 

When two, three or four classes were being distinguished the classifier could achieve 

a 100% accuracy, but had a lower accuracy of 99.9% when six classes were used [27]. 
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Dokur et al. [28] considered the accuracy of both 1D-CNN classification, and the 

classification of ECG images using CNN which had been trained with Walsh 

functions. Walsh functions form an orthonormal basis (like trigonometric functions in 

Fourier analysis), but have a number of advantages including the ability to easily 

expand the number of learned classes [28]. The results found this method achieved an 

accuracy of 99.45% for the classification of 1D ECG signals, and a 98.7% accuracy 

for 2D ECG images. 

Lih et al. [29] made use of a model called Long Short-Term Memory (LSTM) to 

improve the results obtained from their CNN. Although the training of this approach 

was time-consuming and required a sizeable amount of data, the system was able to 

achieve a high classification accuracy (97.33%) despite using signals with noise [29]. 

It was recommended that a pre-trained model with high-performance in a related task 

be used to reduce computational complexity [27]. Parts of the classifier can then be 

modified as needed to improve its performance. 

2.2.3.2. Support Vector Machine 

The SVM is a widely adopted pattern recognition, object identification, and image 

classification technique [15]. Venkatesan et al. [15] used an SVM classifier to sort 

ECG recordings into a normal and abnormal set based on a range of time-domain and 

frequency-domain features. This achieved an accuracy of 96% [15]. An example 

MATLAB program written by MathWorks [23] also obtained an accuracy of 97.96% 

with an SVM. 

Zhang et al. [31] tested a couple different SVMs, including a kernel SVM (KSVM) 

and least-squares SVM (LS-SVM). Their results found the traditional KSVM to have 

the worst results, and the LS-SVM to be the most effective of the methods compared, 

with an accuracy of over 92%. 

Li et al. [30] extended the idea of the SVM by experimenting with different ways in 

which it could be optimised. Particle swarm algorithm (PSO), genetic algorithm (GA) 

and the grid search algorithm (GS) were each used to optimise the SVM which was 

used to classify between six ECG beat types. The results for each were high, with 

average SE, specificities (SP), PPVs and accuracies each well above 95% [30] (see 

Table 2 for specific values). 
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2.2.3.3. Other Classification Methods 

KNN algorithms can also be used to classify ECG recordings. Bouaziz et al. [32] used 

a KNN algorithm to classify 5 different types of ECG signal with a 98.71% accuracy. 

By using a fuzzy KNN, Castillo et al. [33] was able to obtain results of 95.33% for 5 

signal classes, and raised this to 98% by combining the output of the KNN classifier 

with two other ANN classifiers in a ‘fuzzy interference system’. Zhao et al. [22] 

achieved a 95% accuracy with a KNN network, after subjecting the signals to a robust 

pre-processing method (involving noise elimination, heartbeat normalisation and 

quality measurement). 

Castillo et al. [22] investigated the effect of the integer k on the effectiveness of the 

classifier. Larger k values reduced the effect of noise, however they also blurred the 

boundaries between classes [22]. For this reason, Castillo et al. [22] found k = 1 to be 

the optimal solution, even though k = 1 and k = 3 produced similar results. Other 

studies found k = 3 was the best choice for their methods [32,33]. Furthermore, 

selecting k as an odd number was advised, since it prevents the issue of tied votes 

[32]. 

Random Forest algorithms (RaF) are comprised of recursively built classification 

trees, each of which casts a unit vote to determine the classification of input data [34]. 

The classification is the class which wins the most votes out of the entire forest. RaFs 

are resistant to noise, and not subject to overfitting, giving them good performance on 

a number of practical problems [34].  

However, the reported results from RaF classification are mixed. Some studies found 

good results [34,35,36], and others found poorer results [31]. Emanet [34] claimed 

RaF to be fast, have excellent performance and no cross validation, making them 

useful for long-term ECG beat classification. Conversely, Zhang et al. [31] noted that 

RaF generalise poorly, making them far less effective than other methods, such as an 

SVM. 

Yet more methods are mentioned in the literature. Hu et al. [6] used a decision tree 

algorithm to classify between AF and normal ECGs with high success. Celin and 

Vasanth [7] mentioned the use of an Adaptive Boosting algorithm, ANN and a Naïve 

Bayes classifier, and Jambukia et al. [4] briefly reviewed a number of neural 

networks. 
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2.2.4.  Comparison of Classification Methods 

Table 2 summarises the results published in the literature for a range of classification 

methods. This table has been sorted by year, simply to make it easier to display cases 

where one study tested multiple methods. 

Table 2: Comparison of Results in the Literature 

Researcher 
Number of 

Features 

Processing 

and Feature 

Extraction 

Classifier 

Method 

Performance 

Measures 

Average 

Performance 

M. Rashed-Al-

Mahfuz et al. 

(2021) [27] 

5 CWT and RR 

intervals 

CNN Accuracy 

SE 

SP 

AUC 

99.90% 

99.90% 

99.98% 

99.94% 

2 

3 

4 

5 

HHT and RR 

intervals 

CNN Accuracy 

Accuracy 

Accuracy 

Accuracy 

95.75% 

89% 

81.38% 

72.70% 

T. Wang et al. 

(2021) [24] 

5 CWT CNN Accuracy 

PPV 

SE 

F1-Score 

98.74% 

70.75% 

67.47% 

68.76% 

Z. Dokur and 

T. Olmez 

(2020) [28] 

11 - CNN trained 

with Walsh 

Functions 

Success 80%-100% 

Y. Hu et al. 

(2020) [6] 

2 signal splitting, 

bandpass filtering 

Decision Tree Accuracy 

Sensitivity 

Specificity 

98.9% 

97.93% 

99.63% 

H. Li et al. 

(2020) [30] 

6 Wavelet packet 

decomposition 

PSO-SVM Accuracy 

SE 

SP 

PPV 

97.78% 

97.78% 

99.63% 

97.87% 

GA-SVM Accuracy 

SE 

SP 

PPV 

98.33% 

98.33% 

99.72% 

98.42% 

GS-SVM Accuracy 

SE 

SP 

PPV 

98.89% 

98.89% 

99.81% 

98.92% 

O.S. Lih et al. 

(2020) [29] 

4 -- CNN-LSTM Accuracy 

SE 

SP 

PPV 

98.51% 

99.30% 

97.89% 

97.33% 

J. Huang et al. 

(2019) [16] 

5 Spectrogram 2D-CNN Accuracy 99.00% 

5 Spectrogram 1D-CNN Accuracy 90.93% 

Y. Zhang et al. 

(2019) [31] 

2 Various feature 

extraction 

methods 

KSVM Accuracy 89-92% 

LS-SVM Accuracy 91-92% 

RaF Accuracy 89-91% 
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F. Bouaziz et 

al. (2018) [32] 

5 Wavelet 

denoising, DWT 

KNN Accuracy 98.71% 

S. Celin and 

K. Vasanth 

(2018) [7] 

2 Bandpass filtering SVM Accuracy 

SE 

SP 

87.5% 

75% 

100% 

2 Bandpass filtering Adaptive 

Booster 

Accuracy 93% 

2 Bandpass filtering ANN Accuracy 94% 

2 Bandpass filtering Naïve Bayes Accuracy 99.7% 

C. Venkatesan 

et al. (2018) 

[15] 

2 Delayed error 

normalised LMS, 

and DWT 

SVM Accuracy 96% 

M. Kropf et al. 

(2017) [36] 

4 QRS detection, 

and other time-

domain features 

RaF F1-score 81% 

R. Mahajan et 

al. (2017) [35] 

4 Genetic 

Algorithm 

RaF Accuracy 82.7% 

Z. Zhao et al. 

(2013) [22] 

- highpass filter, 

wavelet 

thresholding, 

heartbeat 

normalisation, 

quality measure 

KNN Accuracy 95% 

O. Castillo et 

al. (2012) [33] 

5 Bandpass filter, 

segmentation, 

heartbeat 

normalisation 

Fuzzy KNN Classification 

rate 

95.33% 

N. Emanet 

(2009) [34] 

5 DWT RaF Accuracy 99.8% 

MathWorks 

[23] 

3 Wavelet 

decomposition 

SVM Accuracy 97.96% 

 

2.3. Review Conclusions 

A number of conclusions can be drawn from the review at this stage. These 

encompass how to progress with all of pre-processing, feature extraction and 

classification of ECG signals. 

First, in terms of pre-processing, it is important to do, however more research is 

needed to decide the best way to go about this. Bandpass filtering seems easy to 

implement, and has been used to some success, but is not the best method of 

removing noise from a complex signal like the ECG. More research is needed into 

how wavelet denoising and LMS filtering can be implemented, and the effectiveness 

of each. 

The length of signal segments to be analysed does not seem to play a major role, since 

different methods have reported success with >30 seconds, 10 seconds and even 
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shorter segments. However, since some arrhythmias, like AF, are easily distinguished 

with variations in RR interval distances, it may be best to use longer signals to capture 

more of this information. 

Second, feature extraction can be completed in a number of different ways, for both 

features in the time and the frequency domains. For some arrhythmias, it may be 

sufficient to extract only time- or frequency-domain features, but with the growing 

popularity of image-based classification methods (like the CNN), it is worth 

considering the time-frequency information available in spectrograms. 

Finally, ECG classification can utilise a broad range of techniques, and a wide range 

of modifications to each of these techniques. SVMs have been identified as a suitable 

starting point, and further research has begun on these. However, CNNs look 

promising in the literature. These classifiers also have the advantage of being able to 

classify signals from the spectrogram images, which are easy to obtain with 

MATLAB. Hence, further research into these, and also their computational processing 

requirements, will be completed. 

The literature boasts highly accurate results, with a range of processing, feature 

extraction and classification methods. Hence, it may be difficult to narrow down a 

“one best” classification algorithm. 

It is worth mentioning that although most papers will quote the accuracy of their 

classification method, it is rarely suitable to summarise the results with this single 

metric. The precision and recall (or similarly sensitivity and specificity) give more 

insight into the actual effectiveness of a classifier. For example, a classifier which 

classifies all signals as normal will have a good recall for this, but a poor precision 

since it also classified many signals incorrectly. Suppose this classifier was used with 

a data set of 80% normal signals and 20% abnormal. Here, classifying all signals as 

normal would give a high accuracy, even though common sense tells us this classifier 

is no use at all. Hence papers which only quote an accuracy value may not be 

providing enough information about their results. 

Note that the comparisons made in Table 2 do not take into account all information 

possible. For example, computational power and time have not been considered here, 
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although they are very real constraints for this project. More research into these, and 

other potential issues will be investigated as required. 

In summary, based on the findings of the literature review, the project should progress 

in the following manner: 

1. Begin by applying the raw PhysioNet data [2] to an existing processor which 

makes use of a SVM [23]; 

2. Pre-process the data using existing or simple (i.e. low-pass filtering) pre-

processing techniques, and apply this data to the existing processor; 

3. Experiment using other techniques to process and classify the data, such as a 

CNN; 

4. Compare the results produced from each type to the existing classifier [23]; 

and 

5. Develop a “best” combination of pre-processing and classification methods. 

The effectiveness of the “best” pre-processing and classifier combination will be 

compared to that of results generated by running existing classifiers, and with those 

quoted in the literature, to determine the final conclusions of the project. 
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3. Method 

The project so far, has taken the following form: 

1. Gained a basic understanding of heart disease and ECGs; 

2. Performed preliminary research on ECG analysis using ML techniques; 

3. Wrote a one-page review of the topic to consolidate understanding; 

4. Decided to focus on wavelet de-noising and SVM classification; 

5. Identified a database and an existing SVM classifier, and examined the 

effectiveness of the classifier without pre-processing; 

6. Identified other tools, such as spectrograms, and gained an understanding of 

how these could help with the project; and 

7. Identified possible pre-processing techniques. 

The following sub-sections will discuss how each of these steps was carried out, and 

any major challenges involved. See Section 4: Results for the results developed, and 

Section 5: Discussion for a discussion on the results and method. 

At this time, the project is incomplete. The following steps identify plans for future 

development: 

8. Apply the pre-processed data to the classifier, and compare the results to the 

un-processed data; 

9. Explore other processing and classification techniques, such as CNN, and 

analyse accordingly; 

10. Develop a “best” methodology for classifying ECG recordings; and 

11. Compare the “best” methodology to reported results. 

Meanwhile, a thesis was developed over the course of the project and an interim 

seminar has been presented, however discussion of these deliverables will not be 

discussed in this section. 
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3.1. Heart Disease and ECG Understanding 

A basic understanding of the human body, and in particular the cardiovascular system, 

was previously obtained during courses undertaken for Biomedical Engineering. 

However, heart disease had not yet been analysed. It was important to gain a basic 

understanding in this area to give insight into the variety of problems which could be 

identified in the ECG recordings. 

At this time, PhysioNet [2] was identified as a suitable database from which to obtain 

ECG recordings. The database contained 8528 ECG recordings classified into four 

groups: normal rhythm, atrial fibrillation (AF), other rhythm, and noisy signal. Hence, 

both normal rhythm and AF were researched further. A summary of these results is 

included in the background information (Section 1.5.1). 

3.2. Preliminary Research on ML Techniques 

ML techniques had not been learnt previously, so it was important to gain a 

rudimentary understanding of these. To avoid ML techniques which would not be 

applicable to the project, the search was limited to ML techniques which had already 

been applied to ECG analysis. A summary of these results was used to write the 

background information (Section 1.5.3). 

This led to the identification of SVM classification. This classification method had 

also been recommended by the Supervisors, so a decision was made to focus on it. 

CNNs were also identified as another possible classification tool. Although this has 

not been examined further as of yet, plans to do so are in place for Semester 2. 

3.3. One-Page Review 

A one-page review was developed to succinctly consolidate and demonstrate 

understanding of the topics covered at that time. Although lacking much technical 

detail, this review identified a number of good references and acted as a starting point 

for the literature review. 

A copy of the one-page review is included in Appendix A. 
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3.4. Wavelet De-Noising and SVM Classifier 

Wavelet de-noising had been recommended as an appropriate pre-processing method 

due to the similarity in shape between the wavelet and the ECG. Research into 

wavelets was completed to develop an understanding of how they could be used. 

Using an SVM classification method was also recommended. Hence, research into 

how the SVM works was conducted. 

3.5. Existing SVM Classifier in MATLAB 

An example MATLAB script which used both a wavelet de-noising and an SVM 

classifier was identified. This code was run without change to replicate the results 

provided by the example. This was deemed to be a suitable benchmark to compare 

future results to. 

The data collected from the PhysioNet database [2] was then processed to be applied 

to this classifier. Processing involved ensuring all signals were of the same length and 

required data (i.e. the signals and their classification) were stored in the correct data 

type. The example code also had to be modified extensively to be compatible with our 

data. These required changes were: 

• Changing of the classes from the data used to our data classes; 

• Adding of additional variables to compensate for the change in signal classes; 

and, 

• Modification of window length given our data contained fewer data points. 

Other changes may need to be made to improve the accuracy of the classifier. At this 

stage these changes have been identified, but not implemented: 

• Altering the features and number of features to extract; and, 

• Altering the parameters used for the SVM. 

Further discussion on how these changes were made is included below, and the results 

produced are included in the Results section. A copy of the original code can be found 

here: https://au.mathworks.com/help/wavelet/ug/ecg-classification-using-wavelet-

features.html [23], and the modified code used to collect results is included in 

Appendix B1 Modified MathWorks Example. 

https://au.mathworks.com/help/wavelet/ug/ecg-classification-using-wavelet-features.html
https://au.mathworks.com/help/wavelet/ug/ecg-classification-using-wavelet-features.html
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3.5.1. Preparing the Data 

The data downloaded from the PhysioNet database [2] comprised of a folder of 

individual MATLAB vectors. Each vector represented one ECG recording. These 

recordings had a consistent sampling frequency (300 Hz [2]), but did not have a 

consistent length. As such, the first step in preparing the data was to select a data 

length. A number of options were examined: 

1. Truncating each ECG recording to the length of the shortest recording (2712 

samples ≈ 9 seconds, in this case); 

2. Selecting a length and truncating all recordings longer than this while 

removing all recordings shorter than this: 

i. Length of 3000 samples, equivalent to 10 seconds; 

ii. Length of 6000 samples, equivalent to 20 seconds; 

iii. Length of 9000 samples, equivalent to 30 seconds; and, 

3. Duplicating the recording as many times as required to ensure each signal has 

the same number of points as those in the example code (i.e. 65536 data 

points). 

Other studies had used 10 seconds of ECG recording (or split recordings into 10 

second blocks) [18,20,21,22], so using 3000 samples was chosen for this reason. Over 

half of the signals had 9000 data points, so both 6000 and 9000 samples could be used 

without significantly reducing the size of the data set. It was theorised that longer 

signals would result in a better classification, hence the range of signal lenths. 

The PhysioNet data [2] contained four different ECG classifications. These were 

normal rhythm (N), atrial fibrillation (A), other arrhythmia (O), and noisy recording 

(~). After some experimentation, the number of different classes was also altered to 

investigate how this would affect the results: 

4. All four data classes were included; 

5. The noisy data class was removed, the other three were included; and, 

6. The noisy data was removed and the AF and other arrythmia classes were 

combined into a single ‘abnormal’ class. 
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This would allow investigation as to whether the number of classes the SVM had to 

discriminate between had an impact on the results it was able to produce. 

In each case the ECG recordings and their labels were saved in a data structure which 

matched that in the example. This was done to reduce the number of modifications 

which had to be made to the example code. 

It was also discovered that the way the example code separates the data into a training 

set and a test set requires that the data be sorted in order of its class (i.e. all normal 

signals first, then all AF signals, etc.). Hence, after the other processing steps 

mentioned above, the data was sorted according to its classification. 

3.5.2. Modifying the Example Classes 

The example code contained ECG recordings of three different types: normal sinus 

rhythm (NSR), arrhythmia (ARR) and congestive heart failure (CHF), whereas the 

data downloaded from PhysioNet [2] contained four different types. Due to this, there 

were a number of cases where the example code classes had to be changed from 

{ARR, CHF, NSR} to {A, O, N, ~}. 

Other points in the code required additional variables to be added to enable the fourth 

class to also be identified. This also required altering matrix indices which used to go 

up to 3, but now needed to include 4. 

3.5.3. Magic Numbers 

The example code contained a number of parameters which were very specifically 

chosen to fit with the data, yet were hard-coded. The most obvious of these (since it 

produced an error, whereas the other magic numbers didn’t) was the window length 

used for feature extraction. This was hard-coded as 8192 samples, or one eighth the 

length of the supplied signals. This was modified to a formula which found the 

(rounded-down) length of an eighth of the length of an ECG data signal being 

processed. 

Other magic numbers are included in the code, such as the autoregressive model 

order, and the polynomial order of the SVM classifier. These numbers do not throw 

an error when the code is executed, however they may not be the optimal parameters 

for the data used. Further research will determine the meaning of each of these 

parameters, and which values may be optimal. 
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3.6. Spectrograms 

Spectrograms were also identified as a possible tool to help with the classification of 

ECG signals. Research was done to identify the information which could be gleaned 

from the spectrogram, and how to apply these to an ECG signal. 

The spectrogram function in MATLAB was used to plot the spectrograms of the ECG 

signals. These were then examined for patterns manually. Research into CNNs 

suggest they are powerful tools for classifying images. Hence further research will be 

needed to learn how to transform the MATLAB results into images which can be fed 

to a CNN for classification. 

3.7. Data Pre-Processing 

Preliminary work on pre-processing the data was started. One method of pre-

processing which was identified was the Pan-Tompkins algorithm [4,20]. This 

involves the following steps: 

1. Removal of DC offset; 

2. Band pass filtering to reduce noise from the ECG signal; 

3. Differentiation to find high slopes which usually identify R-peaks and 

suppresses low frequency components of the P and T waves; 

4. Squaring to further enhance high frequency components; 

5. Averaging the signal with an averaging function; and, 

6. Moving window integration to extract the slope of the R wave. 

Each of these steps were completed using MATLAB. At each step the results 

produced were compared to those in [20] to verify the code was achieving the correct 

outcome. This process is described in more detail below. 

The first step was to remove the DC offset of the ECG by subtracting the mean of all 

data points from each point. The next step was to apply a bandpass filter to the data to 

remove noisy high-frequency components, and low frequency artifacts (such as 

breathing) from the ECG recordings. In theory, this would make it easier to classify 

the ECG signals and the spectrogram images easier to examine. 
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The signal then needed to be differentiated to find the high slopes which are indicative 

of the R-peak on the ECG waveform. This was done in MATLAB using the gradient 

function. This was then squared to make these high frequency changes even more 

noticeable, and ensure the whole signal was positive. 

The averaging function was realised using a moving window filter. A window size of 

15 was found to be sufficient. This function smoothed the spikes in the signal into 

gentle peaks. The signal integration was also completed with a moving window. In 

this case a window of width 30 was moved across the signal. The result was further 

smoothing of the signal peaks. 

The results of this process were then able to be analysed. 

3.8. Identification of Other Classifiers 

The aims of this project include comparing classification methods to find a “best” 

way to classify ECG signals. Much work is still to be done in this area, but one 

classifier which utilises a CNN has been identified [37]. This classifier is programmed 

in MATLAB, and in the example, it is used to learn how to identify handwritten 

digits. It may be possible to modify this classifier to classify our ECG data based on 

their spectrograms. 
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4. Results 

4.1. MATLAB SVM Classifier Example 

Without altering any parameters or data, the identified MATLAB classifier example 

produced a test accuracy of 97.96% [23]. This classifier was given 162 ECG signals, 

of which 70% were used to train the machine, and the other 30% were used for 

testing. The example contained three different types of signal: NSR, ARR and CHF. 

In total, 96 of these recordings were from people with ARR, 30 were from people 

with CHF, and 36 recordings were from people with NSR. 

The features of each signal were extracted using wavelets. This decreased each signal 

from 65536 data-points in the time-domain to just 190 features [23]. This made the 

data quicker and easier to process. There are differences in each feature between the 

classes. For example, Figure 9 shows the variance in the second-lowest frequency 

wavelet sub-band [23]. While no one feature alone is enough to separate all classes, 

the idea is to have a rich enough set of features to make this process accurate. 

 

Figure 9: Wavelet Variance by Group in MATLAB Example [23] 

When the example code was run exactly as-is, the results in Table 3 were produced. 

These results show how well the trained classifier sorted the testing set of data. 

Precision is defined as the number of correct positives divided by the number of 

positive results, i.e. the proportion of data records assigned to a label that actually 

belong to that label [23]. Conversely, recall is defined as the number of correct labels 
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divided by the number of labels for a given class, i.e. the proportion of all records 

belonging to a class that got labelled as that class [23]. The F1-score is the harmonic 

mean of precision and recall, so it can better summarise the classifier performance. 

The results show all ARR signals were correctly identified, and no other signals were 

accidentally assigned this label, although one CHF signal was misclassified as an 

NSR signal. 

Table 3: MATLAB Example Classifier Results [23] 

 

These results were considered a good baseline for further study since they used the 

classification methods recommended, and although quite good there was still room for 

improvement. 
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4.2. MATLAB Classifier Modification 

After verifying the example code, the next stage of analysis was to fit the results 

collected from the PhysioNet database [2] to the classifier. In essence, this required 

selecting a time interval (or equivalently number of data points) and truncating or 

extending the data to fit this, deciding how many classes of signal to classify for, and 

then altering the example code to fit the data prepared. See the 23Method Section for 

a more detailed discussion of the steps taken. 

As outlined in the Method, a number of different cases have been input to the example 

MATLAB SVM classifier. Table 4 summarises these results, and they are described 

in more detail in the following sub-sections. 

Table 4: Summary of Results from the Example MATLAB SVM Classifier 

Name 
Samples 

per Signal 

Number 

of Classes 

Number of Signals 
Accuracy 

Total A O N ~ 

MATLAB 

Example Data 

65536 3 162 - - - - 97.96% 

Truncated to 

Shortest ECG 

Recording 

2712 4 8527 738 2456 5049 284 62.98% 

Truncated to 

3000 Samples 

3000 4 8511 737 2452 5039 283 62.10% 

Truncated to 

6000 Samples 

6000 4 7911 654 2348 4741 168 66.02% 

6000 samples, 

Three Classes 

6000 3 7743 654 2348 4741 0 66.88% 

6000 samples, 

Two Classes 

6000 2 7743 0 3002 4741 0 70.34% 

Truncated to 

9000 Samples 

9000 3 7415 625 2262 4528 0 65.87% 

9000 samples, 

All Classes 

9000 4 7560 625 2262 4528 145 65.06% 

Extended to 

65536 Samples 

65536 4 8527 738 2456 5049 284 63.78% 
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Note that as execution time, and CPU and memory requirements were not recorded as 

all cases were able to run successfully on the PC (even while other processes were 

running, such as a web browser and text document). However, it should be noted that 

data sets with more samples took longer to process than ones with less samples, and 

that memory requirements were also higher for the longer signals. 

4.2.1. Truncated to Shortest ECG Recording 

The overall accuracy of the classifier when ECG recordings were truncated to the 

shortest signal was about 63%. Table 5 shows the precision, accuracy and F1-score 

for each class. 

Table 5: Modified Classifier Results for Recordings Truncated to Shortest Signal 

 

4.2.2. Truncated to 3000 Samples 

Previous studies had suggested 10 seconds of ECG recording is enough to develop an 

accurate classifier [18,20,21,22]. The sampling rate of the data used was 300 Hz [2], 

so 10 seconds of data corresponded to 3000 samples. This was not especially different 

to the number of samples used when all signals were truncated to the shortest 

recording, so the similar accuracy of 62% was expected. Table 6 shows the precision, 

recall and F1-scores for each class. 

Table 6: Modified Classifier Results for Recordings Truncated to 3000 Samples 

 

4.2.3. Truncated to 6000 Samples 

Processing on data recordings truncated to 6000 samples was chosen to investigate the 

impact of different numbers of classes since it was both more accurate than using 

fewer samples, and quicker to process than using a greater number of samples. 
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4.2.3.1. Classification of all Four Classes 

The accuracy of classifying all four classes using 6000 samples was 66%. The 

precision, recall and F1-scores are detailed in Table 7. 

Table 7: Modified Classifier Results for Recordings Truncated to 6000 Samples in 4 Classes 

 

It was thought that the number of classes, and indeed nature of the class of noisy 

signal, may have a negative impact on the results. Hence, this data was modified to 

include fewer different classes. 

4.2.3.2. Classification of Three Classes 

Since the noisy signals were too noisy to be classified into one of the other three 

classes, it was decided that these should be removed from the data to be classified. 

These signals were simply removed omitted from the list of recordings. 

The accuracy of this was just shy of 67%, and so was not a notable improvement over 

the four-class case. The precision, recall and F1-scores are shown in Table 8. 

Table 8: Modified Classifier Results for Recordings Truncated to 6000 Samples in 3 Classes 

 

4.2.3.3. Classification of Two Classes 

The results with three classes were not much better than the results with four classes, 

so it was decided to test the results with just two classes: normal and abnormal. To 

reduce coding changes these were labelled as ‘N’ (normal) and ‘O’ (abnormal). To do 

this, the noisy recordings were removed, and all ‘A’ class signals were relabelled as 

‘O’ signals. The result being the ‘O’ class contained all abnormal signals and the ‘N’ 

class contained all normal signals. 
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This produced and accuracy of just over 70%, which is an increase over using three or 

four classes, but still lower than expected. Table 9 shows the precision, recall and F1-

scores of both signal classes. 

Table 9: Modified Classifier Results for Recordings Truncated to 6000 Samples in 2 Classes 

 

4.2.4. Truncated to 9000 Samples 

The low increase in the accuracy produced by 6000 samples prompted the testing of 

another signal length, 9000 samples (or 30 seconds). Approximately 75% of all the 

signals in the PhysioNet database [2] had at least 9000 samples, so truncating to this 

length did not reduce the size of the dataset much. 

4.2.4.1. Classification of all Four Classes 

Again, classification wit four classes was done. This produced an accuracy of 65%, 

which was actually lower than the results obtained with the signals containing 6000 

samples. Detailed results are shown in Table 10. 

Table 10: Modified Classifier Results for Recordings Truncated to 9000 Samples 

 

4.2.4.2. Classification of Three Classes 

Similarly, the noisy signals were omitted to bring the number of classes down to 3. 

The results can be seen in Table 11, and the overall accuracy was 65.9%. This was not 

a notable improvement, and was worse than the results obtained for 3 classes with 

6000 samples. 
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Table 11: Modified Classifier Results for Recordings Truncated to 9000 Samples in 3 Classes 

 

4.2.5. Extended to 65536 Samples 

The example data contained 65536 samples. Hence, it seemed reasonable to see if this 

length of data had any bearing on the accuracy of the results produced. The data was 

extended by adding copies of the recording to the end of it until the data was the 

required number of samples. 

The accuracy of this was 63.8%, and the precision, recall and F1-scores can be found 

in Table 12. 

Table 12: Modified Classifier Results for Recordings Extended to 65536 Samples 

 

This approach was completed first since it did not require as many changes to the 

original code. Once a greater understanding of the code was developed, the other 

approaches mentioned were done. 
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4.3. Modified Pan-Tompkins Algorithm 

The results of using the modified Pan-Tompkins Algorithm to process one signal is 

shown in Figure 10. 

Panel (a) shows the original ECG signal with the DC component removed. This 

means the baseline of the signal rests at 0. 

Panel (b) shows the ECG after filtering with a bandpass filter. This has minimal effect 

on the appearance of the signal since there was little noise in the original signal. 

Panel (c) shows the signal after derivative filtering. This makes the large peaks (R-

peaks of the ECG) stand out, and hides the smaller peaks due to the P and T waves. 

Panel (d) shows the signal after squaring. This further highlights the large peaks of the 

R waves. 

Panel (e) shows the signal after averaging. This converts the signal into a series of 

peaks corresponding to the R-peaks. 

Panel (f) shows the signal after integration which smooths these peaks. 

Figure 11 shows how the signal produced at the end of this sequence corresponds to 

the recorded ECG signal. Notice that each of the peaks corresponds to a QRS 

complex in the signal and that other peaks (even the noise after the first beat) are not 

counted. Hence, this algorithm is able to identify the R-peaks in an ECG recording. 

This can be a useful first step in classifying whether or not a signal is abnormal since 

irregular heartbeats often signify an abnormal condition. 
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Figure 10: Modified Pan-Tompkins Algorithm Stages 

 

Figure 11: Identified R-Peaks of ECG Signal  
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5. Discussion 

This section focuses on the results obtained by modifying the MATLAB SVM 

Classifier [23], as well as a quick discussion of the results from the modified Pan-

Tompkins algorithm. 

5.1. MATLAB Wavelet Denoising and SVM Classification 

Table 4 shows the classifier was not very accurate in classifying our data. 

It was expected that truncating all signals to the smallest recording length and 

truncating all signals to 10 seconds (3000 samples) would yield similar results, since 

the number of samples per signal was similar in each case. The accuracy was indeed 

less than 1% different for each case, with truncating to the shortest being slightly 

more accurate. It was thought that this was due to having a greater number of signals, 

rather than due to the length of the data. 

Using the longer data length of 20 seconds (6000 samples) achieved results which 

were slightly better than with 10 seconds of recorded data. This suggests that the 

greater information stored in longer recordings may be helpful in achieving more 

accurate results. However, extending the data to 30 seconds (9000 samples) decreased 

the classifier accuracy when compared to the 6000 samples case. More research is 

required to understand why our results show these counterintuitive differences, and 

how the code can be further modified to produce better results. 

Furthermore, extending the recordings to the same length as the example data proved 

to be no more effective at accurately classifying the data than truncating each 

recording to the shortest length. Meanwhile, this still took much longer to collate and 

classify than the shorter signal lengths did. 

It should be noted that there may be errors with this method of data extending which 

could be improved upon. For example, the signals used in the Example Code [23] do 

not specify the sampling frequency of the signals. The databases this data was 

collected from has a few different sampling frequencies (i.e. one is sampled at 360 

Hz, and the other at 250 Hz). It is entirely possible that these differences are hard-

coded into the Example Code and have not been altered to fit our data. 
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The number of classes the classifier must discriminate between also seems to have an 

impact on the accuracy of the classifier. Our results found the classifier was 4% more 

accurate when distinguishing between 2 classes as opposed to 4 (for the 6000 samples 

case). However, as this result is small, it is uncertain whether it is indeed better or is 

simply due to chance. Further investigation into the reasons behind the high 

inaccuracies achieved is needed first. 

This inaccuracy of the classifier may have much to do with the nature of the 

modifications made to fit the classifier to our data. Many of the parameters in the 

original code were selected based on published research but were not meant to be an 

exhaustive or optimised list of features [23]. Additionally, since our data differs to 

that in the Example Code, many parameters and variables have had to be modified to 

fit our data. In many cases these modifications have been made ad hoc to compensate 

for errors, rather than having been chosen carefully. Hence, further research will be 

needed to learn how these parameters may be altered to best suit our data. 

It has also been suggested that it would be beneficial to ensure there are an equal 

number of each signal class to be examined. There are two ways this could be done: 

1. Use all signals of the smallest class, and only use this number of recordings 

for each of the other classes; or, 

2. Duplicate signals in the smaller classes so each class can have the same 

number of signals. 

The impacts of these options have not yet been analysed, however duplicating the 

signals may not be a reliable means of testing a classifier. If one copy of a recording 

ends up in the training set and the other in the test set, the classifier will classify it 

correctly, since its set of features will exactly match the features of a signal the ML 

was trained with. Hence this solution is likely to produce unreliably high results. On 

the other hand, reducing the dataset may make it more difficult to properly train the 

ML. 
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5.2. Modified Pan-Tompkins Algorithm 

This algorithm was quite accurate in being able to identify the R-peaks of the ECG 

recordings. Unfortunately, the usefulness of this result is not yet known. This did 

prove helpful in creating a suitable time window with which to create spectrograms of 

the signal. However, in this case it is better to perform a wavelet transform on the data 

to produce a scalogram than it is to produce a spectrogram with STFT, so this may not 

be needed. 

There is a possibility of making use of features extracted by this algorithm (i.e. RR 

intervals, and variance between these intervals), in conjunction with other features 

obtained by the WT or scalogram. This is similar to the method used by Wang et al. 

[24], which produced an accuracy of greater than 98%. Signals with abnormally short 

RR intervals, or with inconsistent RR intervals could be quickly deemed abnormal, 

hopefully reducing the number of these which are mistakenly classified as normal 

rhythms. 
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6. Conclusions (Preliminary) 

So, can we teach a machine to be a cardiologist? From the results gathered so far, 

training ML to accurately classify ECG signals is promising. Although our results are 

not as favourable as those in the literature, hopefully with more research effort a 

similarly reliable classifier can be achieved. 

There has been success in modifying an existing MATLAB SVM classifier to analyse 

the data obtained from the PhysioNet Database [2]. Although the accuracy of this 

classifier when analysing these signals is low, it may be improved by selecting more 

suitable parameters and a more optimised set of features. Pre-processing is yet to be 

applied to these signals also, and this should lead to a better classification accuracy. 

A range of other methods have also been identified which offer promising 

classification results. A MATLAB CNN classifier [37] has been identified and will be 

modified to classify the ECG scalogram data over the coming weeks. 

The implementation of a modified Pan-Tompkins algorithm has also been 

successfully produced and applied to the ECG signals. The possibility of using this 

data as alongside other features is currently being investigated. 
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7. Project Status 

At the time of writing, the project has made good progress, however there is still 

much work to be done. So far, the achievements made include: 

• A literature review of ML methods for pre-processing, extracting features of, 

and classifying ECG recordings; 

• Successful implementation of a modified Pan-Tompkins algorithm; 

• Identification of an existing MATLAB classifier, which uses wavelet 

denoising and an SVM; 

• Modification of this classifier to analyse data collected from the PhysioNet 

database; and, 

• Preliminary exploration of other techniques for both pre-processing and 

classification of ECG signals. 

The final goal is to design a highly accurate classifier to identify abnormalities in the 

ECG signals. A few specific steps have been identified for the following months: 

• More rigorous modification of parameters in the existing MATLAB classifier 

to produce more accurate results; 

• Implementation of pre-processing steps to improve the accuracy of the 

classifier; and, 

• Analysis of other existing classification methods, in particular to begin with 

the example CNN classifier. 

This is not a complete list of further requirements, as additional steps may be added 

based on project developments. A critical comparison of the performance of the 

methods investigated will be completed prior to project close. 

Along with these further points it should be noted that the literature review will 

continue to be developed as further research is conducted. 
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8. Definitions 

Term Meaning 

PhysioNet Database which the examined ECG recordings were downloaded from 

P-wave ECG feature corresponding to contraction of the atria (refer to Figure 1) 

QRS Complex ECG feature corresponding to the contraction of the ventricles (refer to 

Figure 1) 

R-peak The characteristic, (usually) highest peak on an ECG waveform (refer to 

Figure 1) 

RR interval The time between subsequent R-peaks in an ECG recording 

T-wave ECG feature corresponding to repolarisation of the ventricles (refer to 

Figure 1) 

VGG16 A convolutional neural network architecture with 16 layers 

 

9. Abbreviations 

Abbreviation Meaning 

AF Atrial Fibrillation 

ANN Artificial Neural Network 

ARR Arrhythmia 

AUC Area Under Region of Convergence Curve 

bpm Beats per minute 

CHF Congestive Heart Failure 

CNN Convolutional Neural Network 

CVD Cardiovascular Disease 

CWT Continuous Wavelet Transform 

DWT Discrete Wavelet Transform 

ECG Electrocardiogram 

FIR Finite Impulse Response 

FT Fourier Transform 

GA Genetic Algorithm 

GS Grid Search Algorithm 

HHT Hilbert-Huang Transform 

KSVM Kernel Support Vector Machine 

LMS Least Mean Squares 

LS-SVM Least Squares Support Vector Machine 

LSTM Long-Short Term Memory 

ML Machine Learning 

NSR Normal Sinus Rhythm 

PPV Positive Predictive Value 

PSO Particle Swarm Optimisation 

RaF Random Forest 

SC-LNLMS Self-Correcting Leaky Normalised Least Mean Squares 

SE Sensitivity 

SP Specificity 

STFT Short Time Fourier Transform 

SVM Support Vector Machine 

WHO World Health Organisation 
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Appendix A. One-Page Review 

(Copied exactly as-is, including the Reference List.) 

Can we Teach a Machine to be a 
Cardiologist? 

Medical equipment, such as electrocardiograms (ECG), play a pivotal role in the diagnosis of a 

patient. In particular they make it possible for medical professionals to determine heart 

abnormalities and administer the correct treatment [1]. Heart disease continues to be a leading 

cause of death [2], so identifying and treating these diseases early is critical. 

ECGs measure the electrical activity of the heart, which is then plotted as a waveform. Any 

irregularity in the plotted waveform can be indicative of an abnormality [3], so they are a useful tool 

for medical professionals in assessing patient health. An example of an ECG signal, including relevant 

points and intervals and their definitions can be found in Figure 1 at the end of this document. 

Classifying ECGs is a challenging process for a number of reasons. Namely, normal ECGs may differ 

between individuals, one disease may have dissimilar signs on different patients, and two distinct 

diseases may have a similar effect on a normal ECG [3]. 

Recently, there has been an interest in employing machine learning (ML) in the medical field [1] [2] 

[4], such as by analysing the features of ECG to detect abnormalities. ML techniques could make it 

possible to diagnose patients more precisely than when done manually [3]. 

Prior to analysing the ECG for features, it is important to complete some pre-processing on the 

signal. This is done to remove baseline wander, motion artifacts, and other interruptions present in 

the collected results [6]. These noise removal techniques can be done with simple filtering 

techniques such as low pass filtering and Butterworth filters [7], or they can be based on adaptive 

filtering methods such as wavelet transforms, discrete Fourier transform (DFT) and the Pan-

Tompkins algorithm [3] [6]. Adaptive filtering can produce much better results than the simple 

filtering methods. 

Now it is possible to extract the relevant features of the ECG. In the time domain this may involve 

identifying the P and T waves, as well as the QRS complex over many cycles. It may also involve 

measuring the time between R peaks for consistency. In the frequency domain, a number of other 

features are worth identifying, including the very low frequency, low frequency and high frequency 

components of the signal [6]. 

From the features extracted, the signal can be classified as normal or abnormal. It may also be 

possible to determine the type of abnormality present, and further group the signal according to 

this. Various machine learning techniques have been found to be effective for this purpose. These 

include artificial neural networks (ANNs), the K-Nearest-Neighbour (KNN) Rule, Support Vector 

Machine (SVM) and decision tree classifiers [1] [3] [4] [6]. 

The SVM is a classification algorithm which involves using a hyperplane to provide an optimal 

decision boundary to separate classes [1], in this case normal and abnormal ECG signals. It can 

efficiently learn nonlinear functions and has been used previously in various pattern classification 

and regression applications [7]. 
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One abnormality which can be detected from an ECG are heart murmurs. Heart murmurs are a 

“whooshing, humming or rasping” sound between heartbeats, and are caused by turbulent blood 

flow through the heart [8] [9]. Many are innocent, meaning they do not correspond to an underlying 

problem, but heart murmurs can also be linked to a range of disorders including congenital heart 

disorders, cardiac tissue damage and emotional stress [8]. They are often asymptomatic and are only 

picked up during routine health checks. Hence it is important that these are detected early, and 

treatment administered. 

 

Figure 1: ECG signal, points of interest and their descriptions 
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Appendix B. MATLAB Code 

B1 Modified MathWorks Example 

The original code can be accessed through this page: 

https://au.mathworks.com/help/wavelet/ug/ecg-classification-using-wavelet-

features.html [23]. The appendix here shows a version of the code used to classify our 

data (note that since class names are hard-coded into this script, a few different 

versions of this code were actually used, depending on the number of classes being 

examined). 

%% Signal Classification Using Wavelet-Based Features and Support Vector 

Machines 
% Copyright 2018 The MathWorks, Inc. 
% Modified by: S.L. Kleinig (a1740773), May 2021 

  
%% Create Training and Test Data 
% Randomly split the data into two sets - training and test data sets. 
percent_train = 70; 
[trainData,testData,trainLabels,testLabels] = ... 
    helperRandomSplit(percent_train,ourECGData); 
%% Data Set Percentages 
% Examine the percentage of each class in the training and test sets. The 
% percentages in each are consistent with the overall class percentages in 
% the data set. 
Ctrain = countcats(categorical(trainLabels))./numel(trainLabels).*100 
Ctest = countcats(categorical(testLabels))./numel(testLabels).*100 
%% Plot Samples 
% Plot the first few thousand samples of four randomly selected records 
% from |ECGData|. 
figure 
helperPlotRandomRecords(ourECGData,1) 
%% Feature Extraction 
% Extract the features used in the signal classification for each signal. 

  
timeWindow = floor(length(ourECGData.Data(1,:))/8); 
ARorder = 4; 
MODWPTlevel = 4; 
[trainFeatures,testFeatures,featureindices] = ... 
    

helperExtractFeatures(trainData,testData,timeWindow,ARorder,MODWPTlevel); 
%% Examining Some Features 
% As an example, examine the range of Holder exponents in the singularity 
% spectra for the first time window. Plot the data for the entire data set. 
allFeatures = [trainFeatures;testFeatures]; 
allLabels = [trainLabels;testLabels]; 
figure 
boxplot(allFeatures(:,featureindices.HRfeatures(1)),allLabels,'notch','on') 
ylabel('Holder Exponent Range') 
title('Range of Singularity Spectrum by Group (First Time Window)') 
grid on 

  
% You can perform a one-way analysis of variance on this feature and 
% confirm what appears in the boxplot. 
[p,anovatab,st] = anova1(allFeatures(:,featureindices.HRfeatures(1)),... 

https://au.mathworks.com/help/wavelet/ug/ecg-classification-using-wavelet-features.html
https://au.mathworks.com/help/wavelet/ug/ecg-classification-using-wavelet-features.html
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    allLabels); 
c = multcompare(st,'display','off') 

  
% As an additional example, consider the difference in variance in the 
% second-lowest frequency (second-largest scale) wavelet subband for the 
% three groups. 
boxplot(allFeatures(:,featureindices.WVARfeatures(end-

1)),allLabels,'notch','on') 
ylabel('Wavelet Variance') 
title('Wavelet Variance by Group') 
grid on 

  
%% Signal Classification 
features = [trainFeatures; testFeatures]; 
rng(1) 
template = templateSVM(... 
    'KernelFunction','polynomial',... 
    'PolynomialOrder',2,... 
    'KernelScale','auto',... 
    'BoxConstraint',1,... 
    'Standardize',true); 
model = fitcecoc(... 
    features,... 
    [trainLabels;testLabels],... 
    'Learners',template,... 
    'Coding','onevsone',... 
    'ClassNames',{'N','O','A','~'}); 
kfoldmodel = crossval(model,'KFold',5); 
classLabels = kfoldPredict(kfoldmodel); 
loss = kfoldLoss(kfoldmodel)*100 
[confmatCV,grouporder] = 

confusionmat([trainLabels;testLabels],classLabels); 

  
%% Precision, Recall, and F1 Score  
CVTable = helperPrecisionRecall(confmatCV); 
disp(CVTable) 

  
%% Predict Test Data 
model = fitcecoc(... 
     trainFeatures,... 
     trainLabels,... 
     'Learners',template,... 
     'Coding','onevsone',... 
     'ClassNames',{'N','O','A','~'}); 
predLabels = predict(model,testFeatures); 

  
% Use the following to determine the number of correct predictions and 
% obtain the confusion matrix. 
correctPredictions = strcmp(predLabels,testLabels); 
testAccuracy = sum(correctPredictions)/length(testLabels)*100 
[confmatTest,grouporder] = confusionmat(testLabels,predLabels); 

  
% Obtain precision, recall, and the F1 scores for the test set. 
testTable = helperPrecisionRecall(confmatTest); 
disp(testTable) 

  

  
%% Supporting Functions 
% *helperPlotRandomRecords* Plots four ECG signals randomly chosen from 
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% |ECGData|. 
function helperPlotRandomRecords(ECGData,randomSeed) 

  
if nargin==2 
    rng(randomSeed) 
end 

  
M = size(ECGData.Data,1); 
idxsel = randperm(M,4); 
for numplot = 1:4 
    subplot(2,2,numplot) 
    plot_points = min(3000,length(ECGData.Data(1,:))); 
    plot(ECGData.Data(idxsel(numplot),1:plot_points)) 
    ylabel('Volts') 
    if numplot > 2 
        xlabel('Samples') 
    end 
    title(ECGData.Labels{idxsel(numplot)}) 
end 

  
end 
%% 
% *helperExtractFeatures* Extracts the wavelet features and AR coefficients 
% for blocks of the data of a specified size. The features are concatenated 
% into feature vectors. 
function [trainFeatures, testFeatures,featureindices] = 

helperExtractFeatures(trainData,testData,T,AR_order,level) 
% This function is only in support of XpwWaveletMLExample. It may change or 
% be removed in a future release. 
trainFeatures = []; 
testFeatures = []; 

  
for idx =1:size(trainData,1) 
    x = trainData(idx,:); 
    x = detrend(x,0); 
    arcoefs = blockAR(x,AR_order,T); 
    se = shannonEntropy(x,T,level); 
    [cp,rh] = leaders(x,T); 
    wvar = modwtvar(modwt(x,'db2'),'db2'); 
    trainFeatures = [trainFeatures; arcoefs se cp rh wvar']; %#ok<AGROW> 

     
end 

  
for idx =1:size(testData,1) 
    x1 = testData(idx,:); 
    x1 = detrend(x1,0); 
    arcoefs = blockAR(x1,AR_order,T); 
    se = shannonEntropy(x1,T,level); 
    [cp,rh] = leaders(x1,T); 
    wvar = modwtvar(modwt(x1,'db2'),'db2'); 
    testFeatures = [testFeatures;arcoefs se cp rh wvar']; %#ok<AGROW> 

     
end 

  
featureindices = struct(); 
% 4*8 
featureindices.ARfeatures = 1:32; 
startidx = 33; 
endidx = 33+(16*8)-1; 
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featureindices.SEfeatures = startidx:endidx; 
startidx = endidx+1; 
endidx = startidx+7; 
featureindices.CP2features = startidx:endidx; 
startidx = endidx+1; 
endidx = startidx+7; 
featureindices.HRfeatures = startidx:endidx; 
startidx = endidx+1; 
endidx = startidx+13; 
featureindices.WVARfeatures = startidx:endidx; 
end 

  

  
function se = shannonEntropy(x,numbuffer,level) 
numwindows = numel(x)/numbuffer; 
y = buffer(x,numbuffer); 
se = zeros(2^level,size(y,2)); 
for kk = 1:size(y,2) 
    wpt = modwpt(y(:,kk),level); 
    % Sum across time 
    E = sum(wpt.^2,2); 
    Pij = wpt.^2./E; 
    % The following is eps(1) 
    se(:,kk) = -sum(Pij.*log(Pij+eps),2); 
end 
se = reshape(se,2^level*numwindows,1); 
se = se'; 
end 

  

  
function arcfs = blockAR(x,order,numbuffer) 
numwindows = numel(x)/numbuffer; 
y = buffer(x,numbuffer); 
arcfs = zeros(order,size(y,2)); 
for kk = 1:size(y,2) 
    artmp =  arburg(y(:,kk),order); 
    arcfs(:,kk) = artmp(2:end); 
end 
arcfs = reshape(arcfs,order*numwindows,1); 
arcfs = arcfs'; 
end 

  

  
function [cp,rh] = leaders(x,numbuffer) 
y = buffer(x,numbuffer); 
cp = zeros(1,size(y,2)); 
rh = zeros(1,size(y,2)); 
for kk = 1:size(y,2) 
    [~,h,cptmp] = dwtleader(y(:,kk)); 
    cp(kk) = cptmp(2); 
    rh(kk) = range(h); 
end 
end 
%% 
% *helperPrecisionRecall*  returns the precision, recall, and F1 scores 
% based on the confusion matrix. Outputs the results as a MATLAB table. 
function PRTable = helperPrecisionRecall(confmat) 

  
precisionA = confmat(1,1)/sum(confmat(:,1))*100; 
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precisionO = confmat(2,2)/sum(confmat(:,2))*100; 
precisionN = confmat(3,3)/sum(confmat(:,3))*100; 
precisionX = confmat(4,4)/sum(confmat(:,4))*100; 
recallA = confmat(1,1)/sum(confmat(1,:))*100; 
recallO = confmat(2,2)/sum(confmat(2,:))*100; 
recallN = confmat(3,3)/sum(confmat(3,:))*100; 
recallX = confmat(4,4)/sum(confmat(4,:))*100; 
F1A = 2*precisionA*recallA/(precisionA+recallA); 
F1O = 2*precisionO*recallO/(precisionO+recallO); 
F1N = 2*precisionN*recallN/(precisionN+recallN); 
F1X = 2*precisionX*recallX/(precisionX+recallX); 
% Construct a MATLAB Table to display the results. 
PRTable = array2table([precisionA recallA F1A;... 
    precisionO recallO F1O; precisionN recallN F1N; precisionX recallX 

F1X],... 
    'VariableNames',{'Precision','Recall','F1_Score'},'RowNames',... 
    {'A','O','N','~'}); 

  
end 

  
%% 
% Randomly split the data so there are equal proportions of each class in 
% the training and test sets. 
function [trainData, testData, trainLabels, testLabels] = 

helperRandomSplit(percent_train_split,ECGData) 

  
    Labels = ECGData.Labels; 
    Data = ECGData.Data; 
    percent_train_split = percent_train_split/100; 
    idxAbegin = find(strcmpi(Labels,'A'),1,'first'); 
    idxAend = find(strcmpi(Labels,'A'),1,'last'); 
    Na = idxAend-idxAbegin+1; 
    idxObegin = find(strcmpi(Labels,'O'),1,'first'); 
    idxOend = find(strcmpi(Labels,'O'),1,'last'); 
    No = idxOend-idxObegin+1; 
    idxNbegin = find(strcmpi(Labels,'N'),1,'first'); 
    idxNend = find(strcmpi(Labels,'N'),1,'last'); 
    Nn = idxNend-idxNbegin+1; 
    idxXbegin = find(strcmpi(Labels,'~'),1,'first'); 
    idxXend = find(strcmpi(Labels,'~'),1,'last'); 
    Nx = idxXend-idxXbegin+1; 

  
    % Obtain number needed for percentage split 
    num_train_a = round(percent_train_split*Na); 
    num_train_o = round(percent_train_split*No); 
    num_train_n = round(percent_train_split*Nn); 
    num_train_x = round(percent_train_split*Nx); 
    rng default; 
    Pa = randperm(Na,num_train_a); 
    Po = randperm(No,num_train_o); 
    Pn = randperm(Nn,num_train_n); 
    Px = randperm(Nx,num_train_x); 

     
    notPa = setdiff(1:Na,Pa); 
    notPo = setdiff(1:No,Po); 
    notPn = setdiff(1:Nn,Pn); 
    notPx = setdiff(1:Nx,Px); 
    Adata = Data(idxAbegin:idxAend,:); 
    ALabels = Labels(idxAbegin:idxAend); 
    Odata = Data(idxObegin:idxOend,:); 
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    OLabels = Labels(idxObegin:idxOend); 
    Ndata = Data(idxNbegin:idxNend,:); 
    NLabels = Labels(idxNbegin:idxNend); 
    Xdata = Data(idxXbegin:idxXend,:); 
    XLabels = Labels(idxXbegin:idxXend); 

  
    trainA = Adata(Pa,:); 
    trainALabels = ALabels(Pa); 
    testA = Adata(notPa,:); 
    testALabels = ALabels(notPa); 
    trainO = Odata(Po,:); 
    trainOLabels = OLabels(Po); 
    testO = Odata(notPo,:); 
    testOLabels = OLabels(notPo); 
    trainN = Ndata(Pn,:); 
    trainNLabels = NLabels(Pn); 
    testN = Ndata(notPn,:); 
    testNLabels = NLabels(notPn); 
    trainX = Xdata(Px,:); 
    trainXLabels = XLabels(Px); 
    testX = Xdata(notPx,:); 
    testXLabels = XLabels(notPx); 
    trainData = [trainA ; trainO; trainN; trainX]; 
    trainLabels = [trainALabels ; trainOLabels; trainNLabels; 

trainXLabels]; 
    testData = [testA ; testO; testN; testX]; 
    testLabels = [testALabels; testOLabels; testNLabels; testXLabels]; 

  
end 

  
% Copyright 2018 The MathWorks, Inc. 

 

B2 Data Collating Code 

This code was used to convert the signals from a collection of MATLAB files to a 

single variable. This enabled these signals to be passed to the Modified MathWorks 

Classifier [23] (see Appendix B1). Again, a few versions of this code were used to 

collate the data in different ways. 

% Collating Code 

% S.L. Kleinig (a1740773) 

% May 2021 
% Combines all ECG signals into a single variable to pass to the Classifier 

  
clearvars; 

  
% Needed variables 
f_s = 300; 
t_s = 1/f_s; 
time = 10; %seconds 
req_samples = f_s*time; 

  
% Location of the data signals 
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data_dir = 

'C:\Users\slkle\OneDrive\Documents\AdelaideUNI\Honours\Physionet_Records\tr

aining\training2017\'; 

  
% Load the list of records in the validation set. 
RECLIST = readtable([data_dir 'REFERENCE.csv']); 
RECORDS = table2array(RECLIST(:,1)); 
labels = table2array(RECLIST(:,2)); 

  
% Load each ECG recording in turn, and add it and its label to the data 
% strucure 
for i = 1:1:length(RECORDS) 
    fname = RECORDS{i}; 
    tic; 
    file = [data_dir fname]; 
    load(file); 

     
    data = val; 

     
    % Do not include recordings which are too short, otherwise collect the 
    % middle section of the recording 
    if length(val) >= req_samples 
        mid = round(length(data)/2); 
        sidx = mid - req_samples/2; 
        eidx = mid + req_samples/2; 
        generated_data(n,1:req_samples) = data(1,sidx+1:eidx); 
        kept_labels(n,1) = labels(i); 
        n = n + 1; 
    end 

     
    clear data; 
end 

  
fprintf('Data generated...\n'); 

  
ourECGData.Data = sortECGData(generated_data,labels); 

  
clearvars -except ourECGData; 

  
fprintf('Done.\n'); 

  
% Function to sort the data by label 
function [ourECGData] = sortECGData(generated_data,labels) 
arrLabels = cell2mat(labels); 
Alocs = find(arrLabels == 'A'); 
Olocs = find(arrLabels == 'O'); 
Nlocs = find(arrLabels == 'N'); 
Xlocs = find(arrLabels == '~'); 
ourECGData.Data = generated_data(Alocs,:); 
ourECGData.Labels = labels(Alocs); 
ourECGData.Data = [ourECGData.Data;generated_data(Olocs,:)]; 
ourECGData.Labels = [ourECGData.Labels;labels(Olocs)]; 
ourECGData.Data = [ourECGData.Data;generated_data(Nlocs,:)]; 
ourECGData.Labels = [ourECGData.Labels;labels(Nlocs)]; 
ourECGData.Data = [ourECGData.Data;generated_data(Xlocs,:)]; 
ourECGData.Labels = [ourECGData.Labels;labels(Xlocs)]; 
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fprintf("Summary:\n   A = %d records\n   O = %d records\n   N = %d 

records\n   X = %d records\n",sum(arrLabels == 'A'),sum(arrLabels == 

'O'),sum(arrLabels == 'N'),sum(arrLabels == '~')); 
end 

 

B3 Modified Pan-Tompkins Code 

This code was developed based on the method proposed in [20] but has not been 

copied from any source. 

% Modified Pan-Tompkins 
% Sonia Kleinig (a1740773) 
% Using the following as a guide: 

https://ieeexplore.ieee.org/abstract/document/9182298 

  
f_s = 300; 

  
% LOAD A SIGNAL 
% data_dir = [pwd filesep 'validation' filesep]; 
data_dir = 

'C:\Users\slkle\OneDrive\Documents\AdelaideUNI\Honours\Physionet_Records\sa

mple2017/validation/'; 
% Load the list of records in the validation set. 
fid = fopen([data_dir 'RECORDS'],'r'); 
if(fid ~= -1) 
    RECLIST = textscan(fid,'%s'); 
else 
    error(['Could not open ' data_dir 'RECORDS for scoring. Exiting...']) 
end 
fclose(fid); 
RECORDS = RECLIST{1}; 
j = input("Select record: ",'s'); 
j = str2num(j); 
fname = RECORDS{j}; 
tic; 
file = [data_dir fname]; 
load(file); 
heading = ['loaded ' fname '\n']; 
fprintf(heading); 

  
val = val(2000:5000); 

  
% 1. REMOVE DC COMPONENTS 
ecg_dc_rem = val - mean(val); 
ecg_normalised = ecg_dc_rem/max(abs(ecg_dc_rem)); 

  
% 2. BAND PASS FILTER 
H1_N = [1,0,0,0,0,0,-2,0,0,0,0,0,1]; 
% H1_D = (1 - z^(-1))^2; 
H1_D = [1,-2,1]; 
% H2_N = z^(-16) - z^(-17) - 1 + z^(-32); 
H2_N = [-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]; 
% H2_D = 1 - z^(-1); 
H2_D = [1,-1]; 
ecg_filtered = filter(H1_N,H1_D,ecg_normalised); 
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% 3. DERIVATIVE FILTER 
ecg_diff = gradient(ecg_filtered); 
grad_integ = integrate(ecg_diff); 

  
% 4. SQUARING FUNCTION 
ecg_squared = ecg_diff.^2; 

  
% 5. AVERAGING FUNCTION 
windowSize = 15; 
b = (1/windowSize)*ones(1,windowSize); 
a = 1; 
ecg_averaged = filter(b,a,ecg_squared); 

  
% 6. INTEGRATOR 
ecg_integ = integrate(ecg_averaged); 

  
% 7. RESULT 
% Plot Figures 
figure(1) 
plot(ecg_dc_rem/max(abs(ecg_dc_rem))); 
hold on 
plot(ecg_filtered/max(abs(ecg_filtered))); 
plot(ecg_diff/max(abs(ecg_diff))); 
plot(ecg_squared/max(abs(ecg_squared))); 
plot(ecg_averaged/max(abs(ecg_averaged))); 
plot(ecg_integ/max(abs(ecg_integ))); 
hold off 
legend("DC removed","Filtered","Derivative 

Filtered","Squared","Averaged","Integrated"); 
figure(2) 
plot([1:1:3001]/f_s,ecg_dc_rem/max(ecg_dc_rem)); 
hold on 
plot([1:1:3001]/f_s,ecg_integ/max(ecg_integ)); 
hold off 
legend("Original ECG","Integraged ECG"); 
title(heading2);xlabel("Time (seconds)");ylabel("Normalised Amplitude"); 
figure(3) 
subplot(6,1,1) 
plot([1:1:3001]/f_s,ecg_normalised);title("(a) ECG Signal after DC Removed 

and Normalisation"); 
xlabel("Time (seconds)");ylabel("Magnitude"); 
subplot(6,1,2) 
plot([1:1:3001]/f_s,ecg_filtered);title("(b) ECG after Filtering"); 
xlabel("Time (seconds)");ylabel("Magnitude"); 
subplot(6,1,3) 
plot([1:1:3001]/f_s,ecg_diff);title("(c) ECG after Derivative Filtering"); 
xlabel("Time (seconds)");ylabel("Magnitude"); 
subplot(6,1,4) 
plot([1:1:3001]/f_s,ecg_squared);title("(d) ECG after Squaring"); 
xlabel("Time (seconds)");ylabel("Magnitude"); 
subplot(6,1,5) 
plot([1:1:3001]/f_s,ecg_averaged);title("(e) ECG after Averaging"); 
xlabel("Time (seconds)");ylabel("Magnitude"); 
subplot(6,1,6) 
plot([1:1:3001]/f_s,ecg_integ);title("(f) ECG after Integration"); 
xlabel("Time (seconds)");ylabel("Magnitude"); 
sgtitle(heading2); 

 

 


