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Executive	Summary	
With	the	constant	improvements	in	technology,	there	has	been	a	clear	shift	in	the	ways	that	non-
verbal	 neurodivergent	 individuals	 are	 able	 to	 communicate	with	 the	 general	 population.	 This	
includes	the	use	of	tools,	such	as	phone	applications,	which	using	text-to-speech	(TTS)	can	take	
the	 form	of	 an	 artiAicial	 voice	 for	 the	 individual.	 This	 project	 looks	 to	 take	 one	 such	 tool	 and	
improve	it	in	a	way	that	will	create	a	near	seamless	artiAicial	voice,	which	also	beneAits	those	who	
struggle	with	the	process	of	typing.	These	tools	are	more	commonly	known	as	Augmentative	and	
Alternative	Communication	(AAC)	tools/applications,	communication	devices,	or	“talkers”,	and	
assist	 in	construction	of	 sentences/phrases	 through	 the	use	of	 linking	symbols/keywords	and	
predictive	 keyboards	 [1].	 With	 numerous	 options	 on	 the	 market,	 they	 look	 to	 meet	 the	
accessibility	 needs	 of	 neurodivergent	 people,	 categorised	 by	 cognitive,	 physical,	 and	 speech	
needs.	The	main	 features	expected	of	a	AAC	application	 is	a	simple	 layout,	usually	with	 larger	
buttons	to	press	to	assist	those	with	physical	needs	who	mays	struggle	to	type	on	a	keyboard,	as	
well	as	predeAined	options/the	ability	to	categorise	and	store	symbols/keywords	for	repeated	use	
in	communication.	With	the	speciAic	needs	of	individuals	varying	highly	from	person	to	person,	
there	is	often	a	required	trial	period	to	determine	if	the	application/tool	is	appropriate	for	the	
needs	of	the	individual.	This	can	be	a	slow,	and	tedious	problem,	and	as	a	result,	a	solution	that	
meets	all	needs	is	desirable.		

Talk	 For	Me,	 is	 an	 application	 developed	 by	Across	 the	 Cloud	 Ltd.,	which	 in	 its	 current	 alpha	
version,	 presents	 the	 user	 with	 images/terms	 to	 select,	 then	 passing	 these	 along	 to	 a	 Large	
Language	Model	 (LLM),	which	 creates	 a	 sentence	 to	 be	 spoken	 via	TTS.	 It	was	 created	 by	Dr	
Matthew	Berryman,	who	suffered	a	haemorrhagic	stroke	that	left	him	paralysed	and	unable	to	
speak	for	three	weeks.	During	this	time,	he	was	frustrated	in	the	limited	tools	provided	by	the	
hospital	to	allow	for	him	to	communicate,	sighting	paper	charts	that	did	not	even	include	things	
such	 as	 the	 television	 in	 his	 room.	 As	 a	 result,	 Talk	 for	 Me	 is	 an	 application	 aimed	 towards	
predominately	the	needs	of	stroke	patients,	with	other	disabilities	that	affect	speech	also	in	mind.		

The	 improvements	we	have	made	 include	User	 Interface	(UI)	 improvements	 to	better	suit	 the	
application	towards	its	neurodivergent	user	base’s	needs,	focusing	on	simple,	easy	to	understand,	
and	easy	to	reach	buttons.	We	have	implemented	features	that	utilise	the	user’s	current	location,	
and	 time,	 to	 tailor	 the	experience	 to	 the	user,	by	making	recommendations	 for	Menu	 items	of	
nearby	restaurants,	as	well	as	sorting	of	the	provided	keywords	to	recommend	those	commonly	
selected	by	the	user.	Finally,	work	was	completed	to	test	the	performance	of	a	few	LLMs	available	
to	the	team,	to	determine	the	most	suitable	LLM	for	the	application	and	use-case,	as	a	focus	is	
placed	on	the	near	seamless	user	experience	of	talking.		

This	report	goes	into	greater	detail	regarding	each	of	the	components	of	our	improvements,	with	
a	Literature	Review	exploring	some	of	the	concepts	we	looked	at	working	on	for	the	project,	as	
well	as	how	we	achieved	the	features	we	have	included.		
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Chapter	1: Introduction	
1.1. Background	
Nonverbal	 individuals	 face	signiAicant	challenges	when	 it	comes	to	communication.	While	sign	
language	provides	a	probable	solution,	it	is	not	universally	understood,	limiting	its	effectiveness.	
To	 address	 this,	 text-to-speech	 (TTS)	 applications	 have	 been	 developed,	 allowing	 nonverbal	
individuals	to	communicate	in	real-time	with	others	using	a	shared	language.	Among	these	tools	
are	 Augmentative	 and	 Alternative	 Communication	 (AAC)	 applications,	 which	 assist	 users	 in	
constructing	sentences	and	phrases	using	symbols,	keywords,	and	predictive	keyboards.	

Talk	 For	 Me	 is	 one	 such	 AAC	 tool.	 It	 leverages	 ArtiAicial	 Intelligence	 (AI),	 particularly	 Large	
Language	Models	(LLMs),	to	enable	users	to	input	keywords	or	images,	which	are	then	processed	
to	generate	 complex	and	contextually	accurate	 sentences.	LLMs	can	perform	natural	 language	
generation,	making	communication	faster	and	more	efAicient.	This	project	will	not	only	evaluate	
the	performance	of	various	LLMs	to	enhance	communication	speed,	but	also	explore	models	that	
can	operate	locally	on	the	user’s	mobile	device,	making	the	application	accessible	ofAline.		

	

1.2. Motivation	
The	Talk	For	Me	project	was	inspired	by	Dr.	Matthew	Berryman,	Director	of	Across	the	Cloud,	an	
information	technology	services	and	consulting	Airm.	After	suffering	a	haemorrhagic	stroke	that	
left	 him	 unable	 to	 speak	 for	 weeks,	 Dr.	 Berryman	 experienced	 Airsthand	 the	 frustrations	 of	
inadequate	communication	tools.	Traditional	solutions,	such	as	paper	charts,	were	limited	and	
lacked	basic	options	for	everyday	needs.	This	frustration	sparked	the	development	of	Talk	For	Me,	
aimed	initially	at	stroke	patients,	but	with	the	potential	to	cater	for	broader	range	of	individuals	
facing	speech	impairments.	

Across	the	Cloud	is	not	only	the	inspiration	behind	Talk	For	Me	but	also	the	sponsor	and	original	
provider	of	its	codebase.	Their	sponsorship	and	technical	guidance	ensure	that	the	project	aligns	
with	the	needs	of	neurodivergent	individuals	and	those	who	struggle	with	verbal	communication	
due	to	conditions	like	autism,	stroke,	or	other	impairments.	The	project	seeks	to	empower	these	
individuals	by	making	communication	easier,	faster,	and	more	intuitive	for	everyday	use.	

In	 the	past,	TTS	applications	 required	users	 to	manually	 input	 and	edit	 each	word	or	phrase,	
leading	to	slow,	cumbersome	interactions.	By	integrating	AI,	Talk	For	Me	seeks	to	streamline	these	
interactions.	AI-driven	predictive	algorithms	will	suggest	the	most	relevant	phrases	based	on	the	
user’s	context,	such	as	their	location,	previous	selections,	or	time	of	day,	reducing	the	need	for	
extensive	manual	 input.	This	will	make	 the	app	more	 Aluid	and	efAicient,	 enhancing	 the	user’s	
ability	to	communicate	more	naturally.	

	

1.3. Aims	
Currently	 in	 its	alpha	stage,	Talk	For	Me	offers	basic	 text	 suggestions.	The	primary	aim	of	 the	
project	is	to	enhance	and	expand	the	app’s	capabilities	by	improving	the	accuracy	and	relevance	
of	 its	 text	 suggestions,	 making	 it	 more	 responsive	 to	 the	 needs	 of	 nonverbal	 users.	 Key	
improvements	 include	 optimizing	 the	 user	 interface	 (UI)	 to	 better	 serve	 neurodivergent	
individuals,	with	simple	layouts	and	easily	accessible	buttons	for	those	who	may	struggle	with	
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typing.	Features	are	being	added	to	leverage	the	user’s	location	and	time	to	provide	personalized	
suggestions,	such	as	nearby	restaurant	menu	items	or	commonly	used	phrases.	Additionally,	the	
project	aims	to	evaluate	different	LLMs	to	ensure	the	most	suitable	model	is	used,	creating	a	near-
seamless	User	Experience	(UX).	

Beyond	 technical	 improvements,	 the	 project	 seeks	 to	 integrate	 the	 application	 into	 the	
neurodivergent	community,	ensuring	 it	meets	the	speciAic	communication	needs	of	 individuals	
with	 varying	 conditions.	 By	 reAining	 these	 features,	 Talk	 For	 Me	 aims	 to	 contribute	 to	 the	
advancement	of	assistive	technologies	in	healthcare.	Ultimately,	the	project	aims	to	improve	the	
quality	of	life	for	nonverbal	individuals	by	offering	them	a	tool	that	facilitates	more	natural	and	
efAicient	communication	and	catering	to	their	daily	needs.	

	

1.4. Objectives	
To	ensure	success	within	the	allotted	time	frame	and	in	alignment	with	the	team's	expertise,	the	
project	 focuses	 on	 three	 key	 objectives:	 enhancing	 the	 UI,	 conducting	 LLMs	 exploration,	 and	
implementing	Location-Based	personalization.	By	narrowing	the	scope	to	these	areas,	the	goal	is	
to	develop	a	high-quality,	scalable	application	that	delivers	a	seamless	UX.	Enhancing	the	UI	will	
improve	accessibility,	readability,	and	usability,	particularly	 for	neurodivergent	users,	ensuring	
the	app	is	intuitive	and	visually	appealing.	The	exploration	of	different	LLM	options	will	assess	
their	 performance	 and	 suitability,	 ensuring	 the	 system	 generates	 contextually	 appropriate	
sentences	with	minimal	errors,	improving	communication	Aluidity.	The	incorporation	of	Location-
Based	 systems	 will	 provide	 personalized,	 context-aware	 suggestions	 based	 on	 the	 user’s	
environment,	enhancing	the	relevance	of	 interactions	and	the	overall	UX.	By	focusing	on	these	
objectives,	the	project	ensures	that	the	Ainal	product	is	robust,	scalable,	and	user-centric,	while	
staying	within	the	deAined	scope.	

	

1.5. Report	overview	
The	report	is	structured	into	four	key	sections,	each	addressing	a	different	aspect	of	the	project:	
Literature	Review,	Approach,	Outcomes,	and	Future	Work.		The	Literature	Review	will	explore	key	
concepts	in	user	interface	design,	location-based	systems,	and	LLMs,	highlighting	relevant	studies	
and	applications	to	the	project.	The	Approach	section	will	detail	the	methods	used	to	implement	
improvements	to	the	UI,	integrate	location-based	services,	and	optimize	the	performance	of	LLMs.	
Outcomes	will	evaluate	 the	effectiveness	of	 these	 implementations,	providing	 insights	 into	 the	
impact	of	these	enhancements	on	the	user	experience.	Finally,	the	report	will	discuss	Future	Work,	
suggesting	areas	for	further	development	to	improve	the	stability,	performance,	and	scalability	of	
Talk	For	Me.	 	
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Chapter	2: Literature	Review	
2.1. User	Interface	
The	User	Interface	(UI)	is	an	essential	component	of	the	success	of	a	mobile	application,	especially	
for	applications	that	serve	specialized	purpose	such	as	TTS.	The	interaction	between	the	user	and	
the	functionality	of	an	application	must	be	ensure	usability,	accessibility,	and	overall	satisfaction	
of	users.	Hence,	 it	 is	 important	 to	delve	 into	 literature	 review	concerning	 the	 importance	and	
components	of	UI	design	and	their	relevance	to	a	TTS	application.	Previous	work	and	studies	on	
UI	 design	 considerations	 for	 application	will	 be	 also	 explored	 to	 identify	 strategies	 for	 future	
design.	

The	UI	is	how	the	users	will	interact	with	application	and	be	delivered	its	intended	functionalities.	
The	aim	of	a	successful	UI	design	is	to	enhance	the	user’s	ability	to	navigate	and	understand	the	
conveyed	 information	 [2].	 On	 the	 contrary,	 A	 poorly	 designed	 UI	 would	 lead	 to	 frustration	
confusion	[2].	This	is	especially	important	when	considering	the	context	of	a	TTS,	where	the	user	
base	is	likely	to	be	impaired	and	may	have	difAiculties	navigating	the	application.	Several	studies	
have	 highlighted	 the	 importance	 of	 a	 well-designed	 UI	 no	 matter	 the	 target	 audience	 [3].	
Application	types	ranging	from	mental	health	to	e-commerce	platforms,	users	were	found	to	value	
and	prioritize	user	friendliness	and	UI	design	when	evaluating	applications	[3].	This	highlights	
the	importance	of	designing	an	interface	which	is	intuitive	and	ascetically	appealing	to	improve	
the	overall	UX.	

2.1.1. 	Previous	Work	on	UI	Design	on	Applications	
The	 theory	of	Cognitive	Load	suggests	 that	 reducing	 the	unnecessary	mental	 load	required	 to	
navigate	an	application	can	improve	the	effective	information	intake	and	performance	of	a	task.	
This	 can	 be	 applied	 to	 UI	 design	 to	 increase	 user	 friendliness.	 By	 reducing	 the	 amount	 of	
information	on	a	page,	user	can	channel	their	focus	on	the	intended	task.	

Studies	conducted	by	Nielsen	emphasised	that	user	friendliness	increases	when	interfaces	display	
relevant	details	and	minimise	unnecessary	information	[4].	It	was	also	found	that	users	are	more	
likely	 to	respond	well	 to	 interfaces	with	white	spaces	where	 information	 is	shown	clearly	and	
reduced	clutter	[4].	Reducing	extraneous	information	was	shown	to	reduce	the	cognitive	load	[4].		

Kurniawan	and	Zaphiris	conducted	studies	on	assistive	technologies	for	the	elderly,	deAining	many	
beneAiting	strategies	in	increasing	usability	of	UI	design	[5].	It	was	found	that	UI	with	large	font	
size,	readable	styles,	high	contrast,	and	colours	were	highly	effective	in	aiding	the	experience	of	
visually	 or	 cognitive	 impaired	 users	 [5].	 This	 aligns	 with	 the	 context	 of	 a	 TTS	 application,	
harbouring	similar	type	of	user	base.	

The	kinetic	load	of	a	UI	design	refers	to	the	physical	effort	required	to	perform	a	task.	Studies	have	
discussed	the	ergonomics	of	UI,	considering	the	placements	of	interactive	elements	[6].	It	is	key	
to	accommodate	the	natural	human	movements	in	design.	Many	strategies	can	be	employed	to	
reduce	the	kinetic	load	[6].	Buttons	and	elements	should	be	minimised,	team	elements	closely	and	
use	familiar	design	choices.	By	optimizing	the	placement	of	interactive	elements,	physical	effort	
required	to	use	an	application	will	be	signiAicantly	reduced.		

When	 designing	 a	 UI	 many	 considerations	 can	 be	 adapted	 from	 web	 applications.	 The	 Web	
Content	Accessibility	Guidelines	 (WCAG)	 is	a	 set	 list	of	guidelines	which	web	pages	adhere	 to	
make	 content	 more	 accessible	 [7].	 These	 guidelines	 ensure	 the	 principles	 of	 perceivability,	
operability,	understandable	and	robustness	[7].	These	may	include	increasing	the	text	readability,	
keyboard	accessibility	and	incorporating	alternative	text	for	interactive	elements	[7].	It	was	found	
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by	Petrie	and	Kheir	found	that	not	only	did	WCAG	improve	the	UX	for	impaired	individuals	but	
also	for	all	general	users	[8].	This	is	attributed	to	the	accessibility	focused	design	practices	such	
as	increasing	visibility	and	navigation	[8].	Hence,	this	strictly	aligns	with	the	context	of	the	TTS	
application,	 in	which	considering	these	guidelines	 in	the	design	of	UI	can	make	an	application	
accessible	to	a	wide	range	of	people,	especially	with	individuals	with	motor,	visual	or	auditory	
impairments.		

When	speciAically	looking	at	the	UI	design	choices	for	an	TTS	application,	many	strategies	can	be	
explored.	When	considering	TTS	platforms	for	users	with	speech	impairments,	a	study	employed	
the	 use	 of	modiAiable	 interface	which	 allow	 the	 users	 to	 physically	 change	 the	 speech	 speed,	
volume,	and	pitch	[9].	The	ability	to	cater	to	the	speciAic	needs	of	the	user	and	Aine	tune	different	
settings	can	signiAicantly	improve	the	accessibility	provided	by	the	application	[9].	This	addition	
reported	positive	feedback	from	users.	Although	the	adjustments	to	the	speech	output	is	handled	
by	the	language	model,	the	UI	design	will	facilitate	the	user’s	interaction	with	the	functionality.	

Joen	et	al.	explored	the	usage	of	iconography	in	UI	design	for	TTS	applications.	It	was	found	that	
increasing	the	reliance	usage	of	visual	cues	rather	than	text	for	UI,	improve	users'	comprehension	
of	the	application's	functionality	and	status	[10].	This	would	be	done	by	using	visual	elements	
such	 as	 checkboxes,	 animated	 icons	 and	 progress	 bars.	 This	 would	 lead	 to	 an	 increase	 user	
friendliness	and	also	aid	impaired	individuals	to	navigate	efAiciently	within	the	app	[10].	

2.1.2. Relevance	to	project	and	Future	Consideration	
The	review	of	literature	was	able	to	detail	the	importance	of	user	interface	design	in	presenting	
the	functionalities	of	the	application	and	enhancing	the	overall	accessibility	and	experience.	Given	
the	context	of	TTS	and	the	target	user	base	of	individuals	with	different	impairments,	the	insights	
gathered	 from	 the	 previous	 studies	 are	 directly	 applicable	 and	 can	 be	 integrated	with	 in	 the	
current	system.	For	instance,	the	emphasis	on	minimizing	cognitive	and	kinetic	loads	aligns	with	
our	goal	to	create	an	intuitive	and	user-friendly	interface.		

 

2.2. Location-based	Systems	
The	 location-based	 contextual	 suggestion	 system	 will	 elevate	 UX	 by	 reducing	 the	 need	 for	
extensive	user	input.		

2.2.1. Comparison	of	APIs	for	Location-aware	menu	suggestions	
Location-based	systems	have	been	utilized	in	a	wide	range	of	applications.	The	primary	advantage	
of	these	systems	is	their	ability	to	retrieve	detailed	information	about	the	user's	current	location	
and	effectively	 integrate	 this	data	 into	 the	application.	The	most	 efAicient	way	 to	 acquire	data	
without	 conducting	 extensive	 surveys	 is	 by	 accessing	 large	databases.	 This	 can	be	 seamlessly	
integrated	into	the	application	using	an	Application	Programming	Interface	(API).	Examples	of	
applications	and	systems	that	use	APIs	to	achieve	this	 include:	"I’m	Feeling	LoCo",	"Contextual	
Suggestion	Track",	"URecipe",	and	"What’s	Open".	

"I'm	 Feeling	 LoCo"	 is	 a	 location-based,	 context-aware	 recommendation	 system	 designed	 by	
Savage	 et	 al.	 [11]	 to	 provide	 users	with	 personalized	 suggestions	 based	 on	 their	 preferences,	
mood,	and	contextual	information.	This	system	mines	social	network	proAiles	and	leverages	the	
Foursquare	Places	API.	The	Foursquare	API	enables	the	system	to	access	check-in	data,	retrieve	
venue	information,	and	provide	location-based	services.	It	also	has	additional	features	that	ensure	
data	privacy,	and	regulatory	requirements	when	it	comes	to	location	data,	and	optimal	battery	
usage	[11].		
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“Contextual	Suggestion	Track”	is	a	system	designed	by	Hua	and	Alonso	[12]	to	deliver	tailored	
recommendations	 by	 analyzing	 explicit	 user	 preferences	 and	 contextual	 relevance.	 It	 builds	
explicit	models	of	both	general	and	speciAic	user	interests	to	evaluate	the	relevance	of	candidate	
suggestions	 [12].	Leveraging	 the	Yelp	API,	 the	 system	accesses	a	wealth	of	data	 from	 the	Yelp	
website,	including	reviews,	ratings,	and	location-based	information.	This	extensive	dataset	serves	
as	 the	 foundation	 for	 generating	 personalized	 recommendations	 aligned	 with	 the	 user's	
preferences	 and	 current	 context.	 Although	 the	 Yelp	 API	was	 successfully	 used	 to	 gather	 user	
information,	 it	 is	 not	 effective	 for	 acquiring	 restaurant	menu	 data,	 according	 to	 the	 Yelp	 API	
documentation.	This	highlights	the	importance	of	selecting	the	appropriate	API	for	a	project	to	
ensure	it	aligns	with	the	project's	goals.	

URecipe	 is	 an	 application	 created	 by	 Phromchomcha	 [13]	 which	 serves	 as	 a	 virtual	 kitchen	
assistant	aimed	at	improving	users'	culinary	skills.	Utilizing	Android	Studio	for	development	and	
Firebase	Realtime	Database	 for	 user	 accounts	 and	 recipe	 storage,	URecipe	 also	 integrates	 the	
Spoonacular	API	to	access	a	vast	collection	of	recipes	[13].	The	Spoonacular	Nutrition,	Recipe,	and	
Food	 API	 provides	 “access	 to	 over	 380,000	 recipes,	 thousands	 of	 ingredients,	 800,000	 food	
products,	and	100,000	menu	items”	according	to	Spoonacular	support	team.	Spoonacular	allows	
users	to	Aind	recipes	through	natural	language	searches,	such	as	"gluten-free	brownies	without	
sugar"	 or	 "low-fat	 vegan	 cupcakes."	 [14].	 This	 gives	 the	 possibility	 to	 allow	 the	 user	 to	 be	
recommended	menu	items	based	on	food	preferences	they	have	selected.		

"What's	 Open"	 is	 an	 iPhone	 application	 designed	 by	 Gaston	 [15]	 to	 help	 users	 Aind	 nearby	
restaurants	based	on	 their	opening	hours.	The	app	utilizes	Factual's	Places	API	as	 its	primary	
source	of	 restaurant	data,	providing	access	 to	business	hours	directly	within	 the	 initial	 query	
results.	 To	 complement	 this,	 Google's	 Places	 API	 is	 employed	 to	 obtain	 restaurant	 photos,	 as	
Factual's	API	does	not	currently	provide	access	to	this	information.	Harmonizing	data	between	
the	two	APIs	involves	matching	restaurant	records	obtained	from	Factual	with	records	in	Google's	
Places	database	using	a	combination	of	restaurant	names,	street	addresses,	latitude	and	longitude	
coordinates.	 Despite	 some	 challenges	 with	 inconsistent	 data	 formatting	 and	 variations	 in	
restaurant	 names	 between	 the	 two	 databases,	 the	 app	 successfully	 harmonizes	 the	 data	 to	
provide	users	with	 comprehensive	 restaurant	 information,	 including	both	business	hours	 and	
photos.	 Additionally,	 Gaston	 delves	 into	 menu	 information	 from	 various	 providers,	 including	
OpenMenu's	API,	which	holds	promise	due	to	its	generous	usage	limits,	provision	of	restaurant	
menus,	 and	 potential	 integration	 with	 Google	 Places	 for	 seamless	 harmonization.	 Although	
OpenMenu	is	ideal	for	accessing	restaurant	menus,	a	signiAicant	limitation	is	it	requires	a	formal	
company	website,	restricting	its	use	to	businesses	only	[15].	Despite	this	restriction	requiring	a	
formal	 company	website,	 it	 does	not	 affect	Talk	 for	Me	 since	 it	 is	 company-supported.	Hence,	
OpenMenu	 can	 still	 be	 considered	 as	 a	 potential	 API	 for	 the	 project	 and	 could	 possibly	 be	
integrated	with	Google	Places	as	achieved	in	“What’s	Open”.		

2.2.2. Relevance	to	project	and	Future	Consideration	
These	systems	and	applications	show	the	reliance	on	the	API	 for	 its	 location-based	attributes.	
Therefore,	 selecting	 a	 robust	 API	 that	 seamlessly	 integrates	with	 the	 system	 is	 crucial.	When	
evaluating	APIs,	it	is	essential	to	assess	their	functionalities	and	capabilities	as	outlined	in	their	
documentation	as	well	as	their	compatibility	with	the	project.		
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2.3. Large	Language	Models		
LLMs	are	a	subset	of	AI	technology,	and	are	fundamental	to	the	project,	as	they	are	the	way	in	
which	 the	 application	 can	 make	 predictions	 on	 what	 sentence	 to	 respond	 with.	 Language	
Modelling	is	the	process	of	modelling	the	likelihood	of	word	sequences,	to	make	predictions	on	
following	or	missing	phrases	 [16].	As	a	 result,	 a	LLM	 is	 a	Language	Model	 that	has	been	pre-
trained,	and	scaled	in	model	size	to	allow	for	further	improved	performance	[16]	speciAically	in	
the	 area	 of	 Natural	 Language	 Processing	 (NLP).	 NLP	 being	 the	 challenge	 associated	 with	
understanding	increasingly	larger	amounts	of	data/information,	in	a	restricted	amount	of	time	
[17].		

LLM’s	can	be	considered	as	“Cloud-based”	or	“Locally	ran”	depending	on	how	the	user	is	able	to	
interact	with	them.	There	are	signiAicant	beneAits	and	trade-offs	in	selecting	one	or	the	other	and	
has	been	identiAied	as	an	important	consideration	for	the	project.	It	has	also	been	decided	that	
that	the	ethical	concerns	with	using	AI	and	LLM	technology	must	be	considered,	as	we	are	dealing	
with	potentially	sensitive	information	in	the	pursuit	of	AI-Mediated	Communication	(AI-MC)	[18].	

2.3.1. Cloud-Based	LLMs	
There	are	many	beneAits	 for	using	a	LLM	that	 is	hosted	via	 the	cloud.	This	 includes	but	 is	not	
limited	to	avoiding	the	memory	and	processing	requirements	for	a	device	capable	of	running	the	
LLM	[16],	as	well	as	having	easier	access	to	newer,	and	potentially	better	performing	versions	of	
the	LLM.	With	most	popular	LLM’s	having	some	form	of	API	available	for	use,	take	for	instance	
ChatGPT,	which	using	the	cloud	API	allows	the	user	 to	progress	 from	version	3.5	to	4	without	
having	to	download	any	new	technology	[19].		It	also	allows	for	all	users	to	share	the	same	LLM,	
allowing	for	the	LLM	to	further	train	upon	the	provided	input	data,	to	hopefully	provide	more	
accurate	results.		

Two	of	the	leading	options	for	Cloud-Based	LLM	options	are	ChatGPT	by	Open	AI	and	LLaMa	2	by	
Meta.	With	both	possessing	their	similarities,	there	are	some	key	differences	to	consider.	LLaMa	
2	is	an	open	source	LLM,	whereas	ChatGPT	is	based	on	proprietary	software	[20],	a	fact	that	is	
especially	important	when	considering	AI	for	communication,	as	an	open-source	solution	usually	
leads	to	a	solution	with	less	ethical	concern,	as	greater	scrutiny	can	be	placed	upon	it.	Although,	
with	ChatGPT	4	 currently	outperforming	LLaMA	2	on	multiple	different	performance	metrics,	
such	as	common-sense	reasoning,	and	better	scores	when	it	comes	to	avoiding	hallucinating	of	
results	(an	issue	common	to	LLMs,	where	incorrect	information	is	predicted)[21].	

Thus,	in	consideration	of	the	ever-increasing	number	of	options	for	LLMs	that	are	cloud	based,	
further	testing	will	likely	be	required,	to	prioritise	some	of	the	more	unique	requirements	of	the	
project,	being	a	fast,	accurate,	and	ethical	solution	that	encourages	natural	communication.	

2.3.2. Locally	ran	LLMs	
LLMs	can	be	ran	locally,	although	this	is	not	a	typically	chosen	solution.	This	is	due	to	the	size	of	
LLMs,	 and	 the	processing	power	often	 required	 [16].	Although	 in	 the	 speciAic	use	 case	of	 this	
project,	a	local	option	is	still	of	interest	since	it	would	allow	disconnected	users	to	still	access	new	
phrase.	With	LLaMa	having	its	own	mobile	compatible	versions,	this	would	allow	for	the	user	to	
access	a	well-developed	model,	without	the	need	for	an	internet	connection.	There	are	sacriAices	
made	in	choosing	solutions	that	work	locally	though.	Notably,	performance	is	a	major	trade-off	
with	locally	ran	solutions.	With	usually	worse	performing	solutions	being	required	to	meet	the	
performance	speciAications	of	mobile	devices,	the	user	will	 likely	run	into	issues	regarding	the	
quality	of	their	responses.		
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Thus,	with	beneAits	existing	for	locally	implemented	solutions,	these	likely	do	not	outweigh	the	
performance	trade-off	just	yet,	and	thus	continuing	to	use	a	Cloud-Based	solution	is	preferable	
until	a	solution	that	performs	at	a	comparable	level	to	Cloud-Based	solutions	is	presented.	

2.3.3. Ethical	Considerations	of	AI/LLM	Technology	
When	considering	 the	use	of	AI	and	LLM	 technology	 in	 the	mediation	of	 communication,	 it	 is	
necessary	to	consider	some	of	the	ethical	consequences,	and	risks,	associated.	These	can	include,	
the	 bias	 and	 fairness	 of	 information,	 transparency	 in	 the	 use	 of	 AI-MC,	 as	 well	 as	
misrepresentation	and	manipulation	[18],	and	all	pose	a	risk	to	the	integrity	and	privacy	of	the	
conversation	[22].	There	is	also	the	environmental	impact	of	running	the	sort	of	hardware	needed	
for	this	type	of	ArtiAicial	Intelligence,	that	must	be	considered.		

Bias	in	LLMs	can	occur	in	many	ways,	such	as	issues	in	the	training	data,	issues	in	the	deAining	of	
the	goal	of	the	LLM,	etc	[23].	This	can	lead	to	sometimes	unintentional	problems	where	not	only	
can	the	product	sometimes	perform	sub	optimally,	but	it	can	also	provide	incorrect	information	
to	the	user	as	a	result.	In	the	case	of	AI-MC,	this	is	of	particular	concern,	as	bias	in	language	can	
take	sometimes	even	change	the	meaning	of	some	sentences,	by	undermining	certain	styles	of	
communication	[18].		

There	 are	multiple	ways	 to	 consider	 the	 ethical	 problem	of	 transparency.	There	 is	 that	 of	 the	
transparency	of	using	AI-MC,	and	how	AI	tools	are	consistently	attempting	to	hide	the	fact	they	
are	 tools.	 A	 key	 example	 of	 this	 was	 in	 Google’s	 Duplex	 system,	 which	 when	 Airst	 shown	 in	
examples	did	not	identify	itself	as	AI,	for	which	there	was	critical	outcry,	with	Google	later	having	
to	 backtrack	 and	 conAirm	 that	 going	 forward	 it	 will	 begin	 to	 identify	 itself,	 as	 to	 avoid	 any	
problems	with	transparency	[24].		With	a	further	desire	for	transparency	coming	from	the	end-
user's	 desire	 to	 be	 able	 to	 further	 scrutinise	 the	 information	 provided	 by	 AI-MC,	 with	
transparency	required	to	know	when	to	do	so	[18].		

Misrepresentation	 and	Manipulation	 are	 the	 concern	 of	 intentionally	 false	 information	 being	
provided,	to	induce	“false	beliefs”	[18]	with	there	being	a	monetary	beneAit	for	some	companies	
to	manipulate	users	[22],	AI	has	also	been	used	to	spread	fake	news	[25]	.	This	links	with	bias,	
where	it	is	in	the	best	interest	of	the	reputation	of	the	creator,	as	well	as	for	the	user	to	use	an	
unbiased,	non-manipulated	LLM,	such	as	to	maintain	fair	conversation.		

The	 environmental	 impact	 of	 running	 the	 hardware	 required	 for	 LLM	 and	 Natural	 Language	
Processing	(NLP)	technology	cannot	be	understated.	In	Table	2-1	it	was	found	that	the	training	of	
one	model	can	lead	to	emissions	comparable	to	5	times	the	emissions	of	the	lifetime	of	a	car.	As	a	
result,	it	means	that	the	choice	of	when	to	train,	and	the	type	of	energy	used	in	this	type	of	training	
is	signiAicant,	so	as	not	to	have	a	negative	impact	on	the	environment.			
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Table	 2-1	 Estimated	 CO2	 emissions	 from	 training	 common	 NLP	 models,	 compared	 to	 familiar	
consumption.	[26]	

	

Ethically	the	goal	is	to	maintain	an	unbiased,	transparent,	and	non-manipulated	solution	for	the	
user,	such	that	there	is	no	concern	in	false	information,	allowing	for	the	user	to	build	as	close	to	
an	authentic	voice	as	possible.	As	well	as	a	solution	that	is	not	have	a	directly	negative	impact	on	
the	environment.	
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Chapter	3: Approach	
3.1. User	Interface	(UI)		
After	literature	review	was	undertaken,	various	popular	IOS	applications,	including	Apple	Music,	
and	Specify,	were	analysed.	A	screen	capture	of	the	application	UI	was	taken	and	its	features	were	
dissected.	These	analysed	features	will	form	the	basis	of	the	conceptual	design	undertaken	in	the	
future.	

As	detailed	below,	the	Apple	Music	has	considered	reducing	cognitive	and	kinetic	load.	The	app	
incorporates	white	 space	 to	 reduce	 clutter.	 The	 icons	 are	 large,	 consistent,	 and	 easy	 to	 view.	
Similar	 elements	 are	 teamed	 together,	 reducing	 the	mental	 effort	 required	 to	 switch	between	
icons.	Hence,	proving	to	be	an	effective	UI	design.	

	
Figure	3-1	-	Breakdown	of	Features	of	Apple	Music	

Specify	is	a	TTS	application,	specify,	and	it	has	an	effective	UI,	as	seen	below.	The	labels	dissect	
the	various	features	of	the	application.	Although	the	application	has	many	features,	it	reduces	the	
clutter	by	using	white	space.	The	icons	are	quite	large	and	teamed	by	category,	allowing	users	to	
easily	 identify	 and	 navigate	 the	 different	 features.	 Hence,	 reducing	 the	 overall	 kinetic	 and	
cognitive	load.	These	merits	of	this	app	can	be	used	in	the	UI	design	of	the	project.	
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Figure	3-2	-	Breakdown	of	Specify	Application	

3.1.1. UI	Improvements	
The	approach	to	improving	the	user	interface	of	an	IOS	app	involves	a	lengthy	and	systematic	
approach.	The	following	are	the	steps	undertaken.	

1.	Design	research	and	analysis	

Conduct	 adequate	 research	 on	 contemporary	 UI	 designs,	 gathering	 insights	 from	 academic	
papers,	 industry	 reports,	 and	 conduct	 case	 studies	of	 IOS	market	 apps.	Analyse	how	different	
solutions	increase	accessibility	for	impaired	users,	ascetics	or	improve	the	kinetic	and	cognitive	
load.	To	 limit	 the	 scope	of	 the	 task,	 any	addition	 that	 enhances	 the	UX	shall	be	 considered	as	
possible	additions.	

2.		Learn	Swift	Language	and	iOS	Environment	

Since	the	application	is	based	on	swift,	it	is	important	to	familiarise	and	gain	aptitude	with	the	
development	environment.	This	involves	undertaking	online	tutorials	and	documentations.	IOS	
design	guidelines	shall	also	be	practiced.	

3.	Initial	designs	and	mock-ups	

Before	 implementing	 the	 solution	 into	 the	 application	 and	 code,	 it	 is	 important	 to	 develop	
conceptual	mock-up	designs.	These	can	be	designed	using	tool	such	as	paint,	photoshop	or	Adobe	
XD.	This	will	allow	for	the	UI	design	to	be	visualised	to	evaluate	its	utility	against	the	user	needs	
and	best	practices	detailed	in	the	research	phase.	It	will	also	allow	for	the	layout	and	aesthetics	to	



	
	

11	

be	planned	before	coding.	Before	these	plans	are	Ainalised	and	implemented,	feedback	from	the	
stokeholds	and	team	members	shall	be	squired. 
4.	Integration	and	Implementation	

The	mock-up	designs	shall	be	translated	into	UI	components	in	swift.	The	implementation	shall	
be	modularised,	where	small	components	such	as	buttons	and	sliders	are	coded	separately.	This	
stage	is	iterative,	involving	back-and-forth	adjustments	based	on	testing	and	feedback.	
	
5.	Testing,	debugging	and	reAining	

After	implementation,	many	bugs	and	errors	are	likely	to	arise.	Hence,	thorough	testing	shall	be	
undertaken,	ensuring	the	solution	is	consistent	across	all	devices.	

3.1.2. Multiple	&	Past	Responses	
The	need	for	providing	more	options	for	a	user	to	select	when	generating	responses	was	identiAied	
early	on,	as	the	group	noticed	that	a	single	response	may	not	always	convey	the	intentions	of	the	
user.	Also,	that	with	the	option	to	edit	the	generated	response,	it	is	likely	the	user	may	want	to	
repeat	their	previous	responses.		

To	 achieve	 multiple	 responses	 involved	 making	 changes	 to	 the	 how	 data	 was	 being	 passed	
between	the	backend	API	and	the	application,	changes	to	the	API,	along	with	UI	to	account	for	the	
extra	 information.	 To	 begin,	 there	was	 a	 need	 to	 extend	 the	 requests	 being	made	 to	 the	 API,	
instead	adding	a	integer	value	to	the	request,	which	when	passed	to	the	LLM	(in	this	case	OpenAI)	
would	indicate	the	requirement	for	𝑛	responses,	as	speciAied	in	the	OpenAI	documentation	[27].		
From	there,	the	expected	data	type	from	the	API	call	should	be	changed	to	indicate	the	multiple	
responses,	along	with	logic	to	present	the	options	depending	on	the	number	of	desired	responses.		

To	get	previous	responses	was	a	bit	more	involved	but	required	taking	advantage	of	the	existing	
setup	 for	 the	backend.	Prior	 to	beginning	 this	 feature,	 the	app	would	already	reach	out	 to	 the	
backend	with	the	selected	response	to	save	it	into	a	DynamoDB	database.	DynamoDB	[28]	being	
Amazons	NoSQL,	serverless,	database	solution	for	AWS	hosted	applications	(like	Talk	For	Me).		
NoSQL	refers	to	a	database	that	is	"not	only	SQL”,	stores	data	in	ways	other	than	just	relational	
tables,	and	serverless	(or	cloud	hosted),	means	that	scaling	is	taken	care	of	by	the	service,	and	not	
a	consideration	of	the	developers.	This	is	appropriate	for	Talk	For	Me	as	at	this	stage	there	is	only	
one	table	to	be	considered.	Although,	as	will	be	discussed	later	in	this	paper,	it	is	not	a	suitable	
solution	for	all	use	cases.		Querying	this	database	for	the	100	most	recent	requests,	and	checking	
for	suitable	matching	pairs	was	then	used,	with	an	appropriate	sentence	that	has	been	previously	
used	returned	to	the	user.		

	

3.2. Location-based	Systems	
To	understand	the	method	which	directed	the	outcomes	of	location-based	systems,	the	following	
theoretical	concepts	are	brieAly	deAined:	APIs,	Database	Management	Systems	(DMS),	Location	
Services,	and	Caching.	

APIs	are	essentially	rules	which	computer	systems	must	follow	in	ordered	to	communicate	with	
other	systems	[29].		In	this	case,	the	APIs	serve	as	a	bridge	between	the	app	and	external	services,	
allowing	for	real-time	retrieval	of	location	data	and	restaurant	information,	which	is	crucial	for	
delivering	a	personalized	UX.	
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DMS	are	used	in	creating	as	well	as	maintain	collections	of	information	in	computer	architectural	
systems	 [30].	 Databases	 play	 a	 key	 role	 in	 the	 project	 by	 storing	 user	 preferences,	 caching	
restaurant	data,	and	reducing	API	load	by	minimizing	redundant	data	requests.		

Location	Services	are	utilized	to	track	users	and	provide	time	location	information	depending	on	
their	position	[31].	For	the	project	they	play	a	critical	role	in	tracking	the	user’s	location	in	real-
time,	 enabling	 location-aware	 functionality	within	 the	 app.	 Swift	 has	 the	 capability	 to	 import	
Apple’s	Core	Location	framework	in	order	to	acquire	the	geographic	location	and	orientation	of	
the	user’s	device	[32].	By	leveraging	the	Core	Location	library,	the	app	can	dynamically	update	
restaurant	data	based	on	the	user’s	proximity	to	various	locations.	This	ensures	that	users	are	
presented	with	contextually	relevant	information	as	they	move.	The	use	of	latitude	and	longitude	
coordinates	allows	for	accurate	tracking	and	pinpointing	of	nearby	restaurants,	which	directly	
feeds	 into	 the	 API	 to	 fetch	 real-time	 restaurant	 data,	 improving	 personalization	 and	
responsiveness.	

A	cache	in	computer	architecture	is	a	data	storage	layer	which	stores	a	subset	of	data	so	that	future	
requests	for	said	data	will	be	acquired	faster	than	queuing	to	acquire	that	data	again	from	the	
original	source	[33].	Caching	data	is	an	essential	mechanism	used	to	enhance	the	performance	
and	 responsiveness	 of	 the	 app.	 By	 storing	 recently	 accessed	 restaurant	 data	 locally,	 the	 app	
reduces	the	need	for	repeated	API	calls,	minimizing	data	usage	and	improving	load	times.		

Together,	 these	 technologies	 support	 seamless	 integration,	 efAicient	 data	 management,	 and	 a	
user-friendly	interface	that	enhances	both	accessibility	and	usability.	

3.2.1. Location	Aware	Restaurants	and	Menu	Items	
Successfully	achieving	the	project	goals	involves	executing	the	following	Aive	key	steps:		

1.	API	Research	and	Analysis	

Comprehensive	 research	 in	 previous	 literature	 was	 conducted	 to	 identify	 the	 most	 suitable	
location-based	 API	 for	 this	 project.	 The	 analysis	 included	 evaluating	 each	 API's	 features,	
documentation	quality,	pricing	structure,	and	limitations.	The	primary	focus	was	on	APIs	capable	
of	retrieving	essential	photos	for	user	display	and	accessing	restaurant	menu	items.	Initially,	the	
scope	was	narrowed	to	fast	food	restaurants	to	simplify	implementation,	with	the	potential	for	
expansion	to	other	types	of	eateries	for	future	scalability.	

2.	Swift	Language	ProAiciency	Development	

ProAiciency	in	Swift	was	enhanced	by	working	on	smaller	components	within	the	project,	which	
provided	 a	 solid	 foundation	 for	 effectively	 integrating	 the	 chosen	 API.	 This	 step	 ensured	
familiarity	with	key	iOS	development	concepts,	allowing	for	smoother	implementation	of	complex	
features.	

3.	Integration	and	Implementation	Planning	

A	detailed	plan	was	developed	for	the	seamless	integration	of	the	location-based	API	into	the	iOS	
application.	This	included	deAining	API	endpoints,	creating	mockups	to	demonstrate	application	
and	 API	 interaction,	 a	 plan	 for	 handling	 data	 retrieval	 and	 manipulation,	 and	 ensuring	
compatibility	with	existing	application	features.	A	clear	implementation	strategy	was	crucial	to	
minimize	integration	challenges	and	ensure	efAicient	data	Alow.	

4.	Integration	and	Implementation	

The	 implementation	 of	 the	 location-based	 API	 involved	 creating	 a	 dedicated	 Swift	module	 to	
handle	API	interactions,	including	restaurant	searches	and	menu	item	retrieval.	The	integration	
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focused	on	building	URL	requests	with	parameters	 such	as	 latitude,	 longitude,	and	restaurant	
names,	then	using	URLSession	to	fetch	and	decode	JSON	responses	into	Swift	structs.	This	allowed	
real-time	 data,	 such	 as	 restaurant	 details	 and	 menus,	 to	 be	 displayed	 within	 the	 app.	 The	
integration	 was	 optimized	 for	 performance,	 ensuring	 efAicient	 data	 handling	 and	 error	
management	to	provide	users	with	a	smooth	experience.	

5.	Testing,	debugging,	and	re]ining	

Manual	testing	was	carried	out	using	simulated	environments	alongside	real-life	geolocation	data	
from	the	API	database	to	ensure	the	functionality	and	reliability	of	the	integrated	API.	The	process	
involved	identifying	and	resolving	bugs,	with	a	focus	on	maintaining	accuracy,	performance,	and	
providing	high-quality	UX	for	the	location-based	features.	By	simulating	various	environments,	it	
ensures	application	will	perform	consistently	and	reliably	across	different	contexts.	

The	method	outlined	above	provides	a	generalized	approach	to	achieving	the	project	outcomes.	
In	this	case,	the	selected	API	for	integration	is	Spoonacular,	which	was	speciAically	chosen	for	its	
capabilities	in	retrieving	restaurant	data	and	menu	item	information.	

3.2.2. Location	Based	Sorting	of	information	
To	sort	the	presented	keywords	for	a	user	we	Airst	needed	a	way	to	store	the	information	being	
passed	to	and	from	the	API.	 It	would	also	need	some	way	of	being	searched	by	values	such	as	
within	a	certain	distance	from	speciAied	coordinates,	and	from	different	times.	With	the	existing	
infrastructure	of	the	DynamoDB	database,	discussed	in	3.1.2	this	would	not	be	possible.	Instead,	
a	relational	database,	such	that	a	request	can	be	abstracted	from	its	response.	But	the	information	
passed	in	a	request	can	be	used	to	Aind	the	corresponding	response	if	required.	Structured	Query	
Language	(SQL)	 is	 the	standard	for	communicating	with	relational	databases,	and	a	Relational	
Database	Management	Systems	(RDMS)	that	works	with	SQL	would	be	preferred	for	this	project.	
The	database	also	needed	to	be	extensible,	such	that	it	could	be	used	for	future	situations	such	as	
custom	restaurants,	like	those	in	3.2.1	

Initially	the	group	considered	PostgreSQL	by	the	recommendation	of	Dr	Matthew	Berryman,	this	
is	 due	 to	 the	 numerous	 Geospatial	 packages	 that	 extend	 PostgreSQL	 and	 would	 allow	 for	
searching	 for	 requests	made,	 for	 example,	 from	 1km	 from	 a	 certain	 longitude/latitude	 easily.	
Another	solution	would	be	to	use	SQLite,	like	PostgreSQL	it	would	have	the	functionality	to	search	
for	requests	from	a	speciAied	distance,	although	limited	by	the	number	of	Geospatial	functions	
available.	Instead,	SQLite	beneAited	from	having	a	fully	integrated	swift	package,	that	would	allow	
for	creating	the	database	inside	of	the	Swift	application,	see	Appendix	A,	as	well	as	interacting	
with	it	(where	PostgreSQL	would	have	required	setting	up	the	database	outside	of	Swift).	This	
and	the	small	size	of	SQLite	favored	its	implementation	for	the	functionality.	

From	there,	the	layout	of	the	data	structures	could	be	deAined,	as	seen	in	Figure	3-3,	the	requests	
and	responses	were	kept	abstracted	but	linked	with	the	requestId.	The	current	design	was	kept	
minimal,	with	 the	 possibility	 to	 extend	 in	 the	 future	 if	 required.	 Using	 this	 style	 of	 database,	
several	queries	could	be	implemented	to	get	the	required	information.	
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Figure	3-3	-	Database	design	for	Local	DB	solution	

As	 the	 focus	 of	 the	 sorting	 is	 on	 the	 “words”	much	of	 the	use	 cases	 currently	 only	utilise	 the	
requests	 table,	 although	 this	 could	 easily	 be	 extended	 to	 for	 example,	 providing	 suggested	
responses	 in	 the	 case	 of	 failure	 to	 connect	 to	 the	 backend	 API,	 etc.	 With	 that	 basic	 sorting	
functionality	was	added	to	the	application,	with	a	Sort	Manager	class	created	to	handle	the	sorting	
outside	of	the	main	View,	to	prevent	any	Swift	Errors.	 In	order	to	get	the	“Smart	Location	and	
Time”	sorting	we	were	after	the	query	had	to	be	organised	in	a	way	that	would	preference	words	
used	in	the	same	location,	prior	to	those	selected	around	the	same	time.	As	a	result,	the	database	
would	be	queried	for	a	speciAied	number	of	the	most	recent	requests	(for	testing	15	was	used	but	
more	could	be	tested,	dependent	on	performance	costs),	of	which	if	a	location	within	the	current	
distance	was	found,	the	words	would	be	counted,	totalling	all	to	Aind	the	3	most	used	words.	If	
this	failed,	or	the	location	was	new,	the	same	would	be	done	for	the	current	time	on	that	speciAic	
day	+/-	1	hour,	e.g.	 if	 it	was	1pm	on	a	Monday	 it	would	search	 for	all	 requests	 from	Mondays	
between	12pm-2pm,	as	a	fallback.	Doing	the	same,	and	totalling	the	3	most	used	words,	these	
words	would	then	be	placed	at	the	top	of	the	list,	as	priority	words,	with	text	colour	changed	to	
indicate,	to	easily	be	selected	by	the	users.					

	

3.3. Large	Language	Models	
With	Large	Language	Models,	the	focus	was	to	get	the	most	out	of	the	existing	technology,	in	the	
spirit	 of	 creating	 a	 seamless	 communication	 method,	 by	 reducing	 wait	 times	 for	 generated	
sentences.	To	achieve	this,	performance	testing,	in	the	form	of	testing	the	speed	of	responses	for	
a	few	LLM	options	was	completed,	as	well	as	prompt	engineering	on	said	LLM	options	to	get	the	
most	out	of	each	of	the	models,	and	their	sometimes-unique	features.		

3.3.1. Performance	Testing	
To	test	the	performance	of	different	LLM	models,	the	metric	for	performance	had	to	be	set	at	the	
speed	of	receiving	a	response	with	an	appropriate	message	(e.g.	simply	contains	a	message	to	
read,	with	 no	mention	 of	 coming	 from	 an	 LLM).	 This	 is	 because	 the	 quality	 of	 a	 response	 is	
subjective	and	cannot	be	critically	measured.	The	only	case	in	which	the	content	of	the	response	
is	considered	 is	when	 looking	at	 if	 it	 is	“appropriate”	 for	use	 in	the	application.	Notably,	some	
models	when	queried	with	the	same	prompt,	would	sometimes	say	things	such	as	“Based	on	the	
provided	content	here	is	a	concise	sentence	that	does	not	pad	or	contain	information	regarding	
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the	prompt”	[Appendix	B],	as	a	result	it	is	unfair	to	include	the	speed	of	such	a	result	and	thus	that	
entry	would	be	disqualiAied.	

To	execute	this,	group	was	initially	provided	by	Dr	Matthew	Berryman	with	a	list	of	the	available	
compatible	LLM	models	for	the	existing	codebase,	see	Table	3-1,	the	group	could	then	focus	in	on	
testing	these	models.	To	do	so,	the	existing	API	Backend	had	to	be	modiAied	to	a	single	testing	
endpoint,	capable	of	measuring	different	LLMs	with	different	requirements.	This	endpoint	would	
then	when	called	take	a	long	list	of	different	word	combinations	generated	from	a	sample	word	
list	to	try	test	on	each	of	the	models	and	write	to	a	csv	like	that	seen	in	Appendix	B.	Said	CSV	data	
could	 then	be	 plotted	 and	 analysed	 to	 produce	 conclusions	 regarding	 the	 performance	 of	 the	
models.	For	word	lists,	two	options	we	chosen.	A	random	selection	of	100	pairs	of	words	from	
Googles	1000	word,	no	swear,	dataset	was	selected,	as	well	as	a	dataset	also	of	100	pairs,	100	sets	
of	3	words,	as	well	as	100	single	words	selected	by	ChatGPT	from	the	dataset	as	words	someone	
may	use	to	describe	what	they	want.	The	purpose	of	these	different	datasets	was	to	both	show	
the	performance	of	the	models	for	different	number	of	words,	with	three	selected	to	be	the	max	
number	of	words	commonly	used	by	a	user	at	a	time,	as	well	as	showing	how	the	model	performs	
with	words	that	Ait	the	prompt,	as	well	as	those	that	may	not	necessarily.	

Table	3-1	-	List	of	LLM	Models	available	to	the	group	for	Testing.	

Platform Company Models Available Regions 

Amazon Bedrock 

Amazon Titan Text G1 - Lite us-east-1, ap-southeast-2 

Titan Text G1 - Express us-east-1, ap-southeast-2 

Cohere Command Text v14 us-east-1 

Command Light v14 us-east-1 

Meta LLaMa 2 Chat 13b us-east-1 

LLaMa 2 Chat 13b us-east-1 

  OpenAI 

GPT 3.5 Turbo N/A 

GPT 3.5 Turbo 16k N/A 

GPT 4  N/A 

GPT 4 Turbo N/A 

	

The	considerations	that	would	be	made	for	this	testing	included:	all	testing	would	be	completed	
from	a	single	device,	on	a	single	Wi-Fi	network,	all	models	would	be	tested	on	the	same	prompt	
for	initial	testing,	with	the	same	parameters,	seen	in	Table	3-2,	with	all	other	parameters	kept	
default	 for	 the	 mode.	 The	 choice	 of	 a	 single	 device	 was	 to	 attempt	 to	 mimic	 the	 endpoint	
environment,	where	the	interactions	with	LLMs	would	occur	from	a	AWS	hosted	server,	as	a	result	
we	are	considering	the	time	for	that	server	to	get	a	response	from	the	model,	and	not	the	end	user.		

Table	3-2	–	Constant	Model	Parameters	for	LLM	Model	Performance	Testing	

Parameter Value 

temperature 0 

topP 0.9 

maxTokens 128 

Many	of	 the	models	were	 available	 through	Amazon	Bedrock,	which	 is	 Amazon’s	 service	 that	
provides	access	to	large	pre-trained	models,	for	easier	integration	into	smaller	scale	applications.	
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The	downside	of	using	Amazon	Bedrock	is	most	of	the	models	were	only	available	in	a	United	
States	 East	 Coast	 region,	which	 is	 important	 due	 the	 impact	 that	 server	 regions	 can	 have	 on	
latency	of	response.	Dr	Matthew	Berryman	was	able	to	get	the	group	access	to	the	Bedrock	models	
on	a	Sydney	server,	as	seen	in	Table	3-1.	OpenAI	does	not	specify	the	location	of	their	servers	in	
the	USA	 [34],	 but	 it	 is	 known	 that	 the	 servers	we	 are	 testing	 on	 are	USA	based.	 To	 show	 the	
variation	in	the	different	regions,	the	two	available	Bedrock	models	would	be	tested	side	by	side	
for	both	regions	to	show	the	variation	regions	can	have.	With	that	in	mind,	the	difference	could	
then	 be	 considered	 for	 the	 Cohere	 and	Meta	models,	 as	 they	 could	 potentially	 fare	 better	 in	
different	regions.	There	was	also	the	issue	of	token	allocation,	with	each	model	only	allowing	so	
many	requests,	 the	 testing	had	 to	be	kept	 relatively	conservative.	As	a	 result,	each	model	was	
tested	for	100	test	cases,	a	total	of	3	times	each,	on	each	dataset,	and	averaging	the	results	over	
the	three	runs.	It	is	expected	that	the	model	should	return	the	same	message	each	time,	so	this	is	
done	purely	to	avoid	any	outlier	results	where	a	single	response	may	have	taken	longer	for	several	
different	reasons.			

	

3.3.2. Prompt	Engineering	
Throughout	the	testing	done	in	4.3.1	it	was	observed	that	despite	using	the	same	prompt	for	all	
models,	 seen	 in	 Figure	 3-4,	 the	 results	 could	 vary	 highly.	With	 some	models	 also	 presenting	
signiAicant	amounts	of	preface,	or	additional	context	that	the	LLM	returns,	even	if	not	required	for	
the	use	case.	Notably,	this	occurred	with	the	models	from	Meta	that	were	tested	“LLaMa	2	Chat	
13b”	and	“LLaMa	2	Chat	70b”	where	they	consistently	would	utilise	all	 the	available	tokens	to	
return,	see	X.	As	a	result,	they	showed	poor	performance	comparable	to	the	other	models,	to	be	
discussed	further	in	4.3.1.		

	
Figure	3-4	-	Prompt	used	for	Models	during	testing	in	3.3.1	

	
Figure	3-5	-	Returned	response	from	LLaMa	2	Chat	70b	using	prompt	from	Figure	3-4	

This	became	a	point	of	interest,	and	as	a	result	was	set	as	the	focus	for	Prompt	Engineering,	which	
is	a	technique	that	involves	modifying	the	prompt	to	alter	the	response	from	the	LLM.	With	more	
speciAic	language	and	directions,	as	well	as	utilising	the	models	“structured	prompt”	formatting	
to	give	the	model	a	more	direct	idea	of	what	it	needs	to	achieve.		

In	this	case,	Meta	through	Bedrock	provides	the	following	structured	prompt	layout	seen	in	Figure	
3-6,	which	allows	for	system	instructions	to	be	passed,	instructing	the	model	on	features	such	as	
formatting	of	the	result,	and	what	is	and	isn’t	considered	a	passable	result.	
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Figure	3-6	-	Example	of	Structured	Prompt	formatting	from	Meta	LLaMa	documentation	[35]	

Along	with	 the	process	 of	 trial	 and	 error	being	 employed	over	 various	different	prompts,	 the	
following	prompt	Figure	3-7	was	 created	 to	 add	 the	 required	 system	 instructions,	 along	with	
specify	in	requirements	to	avoid	the	preface	that	had	been	previously	received.	

From	 here	 the	 prompt	 was	 tested	 along	 the	 same	 datasets	 used	 in	 3.3.1	 to	 observe	 for	 any	
improvements	 in	 response	 speed,	 along	 with	 quality	 in	 response	 (reduced	 preface).	 Similar	
practices	were	maintained	for	fair	testing,	such	as	utilising	the	same	parameters	seen	in	Table	3-2,	
as	well	as	testing	each	prompt	3	times	to	average	out,	and	avoid	any	outlier	performance.	

	
Figure	3-7	-	Constructed	Prompt	for	Prompt	Engineering	Testing	
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Chapter	4: Outcomes	
4.1. User	Interface	(UI)		
Following	the	project	approach,	the	initial	implementation	step	was	to	design	an	iterative	mock-
up	design	of	the	user	interface.	Based	on	the	literature	review	and	familiarization	with	the	swift	
environment,	many	 different	 UI	 improvements	were	 imagined	 in	 the	mock-up.	 The	 aim	 is	 to	
modularly	 implement	 these	 improvements	 to	achieve	 the	desired	outcomes.	The	new	features	
shall	lead	to	overall	enhanced usability, increased accessibility, robust and visual design. 

Table	4-1	-	Proposed	UI	Additions	Based	on	Mock-ups	

Proposed	Addition	

1.	Background	design	

2.	Re-designed	Toolbar		

3.	Re-designed	element	layout	and	alignment	

		

4.1.1. Mock-up	
Following	the	approval	of	the	mockup	design	by	the	stakeholders	and	group	members,	each	of	the	
additions	were	segmented	into	stages	implemented	into	the	application.	These	additions	will	be	
addressed.	The	Ainal	mock-up	was	a	hand	drawn	design	shown	below	as		Figure	4-1.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	4-1	-	Hand	drawn	mock-up	of	the	talk	for	me	UI,	labelling	the	proposed	additions	

This	 was	 able	 to	 show	 the	 stakeholders	 and	 the	 team	members	 of	 the	 project	 the	 proposed	
improvements	to	the	UI.	The	hand	drawn	characteristic	of	the	mockup	proved	to	be	a	practical	
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limitation.	 Initially,	 the	 use	 digital	 tools	 such	 as	 Figma	 was	 attempted,	 which	 are	 industry	
standards	 for	creating	detailed	UI	mock-ups.	However,	 the	 learning	curve	 involved	 in	grasping	
Figma’s	features	proved	to	be	too	time-consuming	within	the	scope	of	this	project.	Consequently,	
a	hand-drawn	mock-up	was	designed	to	quickly	convey	the	UI	improvements	to	stakeholders	and	
team	members.	While	this	approach	allowed	to	illustrate	the	core	ideas	and	gather	feedback,	it	
also	came	with	signiAicant	limitations.	Hand-drawn	mock-ups	lack	the	precision	and	detail	that	
digital	 tools	offer,	making	 it	difAicult	 to	 fully	capture	the	exact	 look	of	 the	 Ainal	product.	Subtle	
elements	like	colour	schemes,	spacing,	and	alignment	were	not	represented	as	accurately	as	they	
would	have	been	 in	a	digital	 format.	Additionally,	 through	this	process,	 it	was	realized	 that	UI	
mock-up	design	is	a	specialized	discipline	that	requires	in-depth	research,	strategic	thinking,	and	
familiarity	with	design	principles	areas	that	could	not	be	fully	explored	due	to	time	constraints.	
Moving	forward,	investing	time	in	learning	digital	design	tools	and	conducting	thorough	research	
would	signiAicantly	improve	the	quality	and	accuracy	of	future	UI	mock-ups.	

4.1.2. Background	and	Foreground	Separation	
The	objective	of	 this	outcome	was	 to	design	and	add	a	background	 to	 the	main	 screen	of	 the	
application	shown	below	in	Figure	4-2.	The	background	should	be	aesthetic	and	not	distracting	
from	the	interactive	elements.	A	custom	background	with	gradient	colours	similar	to	the	logo	of	
the	app	was	designed	and	implemented.	The	background	allows	users	to	differentiate	between	
the	background	and	 foreground	buttons,	 leading	 to	 reduced	cognitive	and	kinetic	 effort	when	
navigating	the	app.	

	

	

Figure	4-2	-	Snapshot	of	the	talk	for	me	app,	highlighting	the	background	design	addition	

Testing	was	carried	out	to	ensure	that	the	background	should	not	interfere	with	the	alignment	
and	 interactivity	 of	 the	 buttons	 and	 elements.	 The	 addition	was	 tested	 for	 its	 functionality	 in	
different	scenarios	and	edge	cases.	Any	bugs	or	issues	detected	during	this	phase	were	promptly	
addressed	and	mitigated.		
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Before	the	update,	the	app	had	no	background,	causing	all	elements	to	be	blended,	which	made	it	
difAicult	for	users	to	distinguish	between	interactive	components	and	the	general	layout.	The	new	
gradient	background	solves	this	issue,	providing	clear	separation	and	enhancing	the	overall	UX.	
The	 custom	background	 addition	was	 inAluenced	 by	 observing	 other	 successful	 apps,	 such	 as	
Specify.	 These	 apps	 were	 able	 to	 create	 a	 clear	 distinction	 of	 interactive	 elements.	 During	
implementation	it	was	Initially	considered	to	add	an	image-based	background.	However,	licensing	
and	 image	resolution	were	 found	 to	be	a	challenge	 for	 this	approach.	Maintaining	 the	 image's	
quality	while	 ensuring	 it	 didn’t	 interfere	with	 the	 existing	 foreground	 elements	was	 difAicult.	
Additionally,	images	often	come	with	unpredictable	scaling	issues	when	applied	across	various	
screen	sizes,	which	could	negatively	affect	the	UX.	

After	 evaluation,	 It	 was	 decided	 that	 a	 directly	 coded	 gradient	 background	would	 be	 a	more	
functional	 solution.	 This	 approach	 avoided	 licensing	 complications	 and	 ensured	 that	 the	
background	scaled	seamlessly	across	different	devices.	This	also	allowed	for	more	control	over	
the	aesthetics,	ensuring	the	background	remained	non-distracting	and	consistent.	The	design’s	
colours	were	selected	based	on	the	app's	brand	logo,	tying	the	design	into	the	app’s	identity	and	
providing	a	 cohesive	visual	 experience.	When	 compared	 to	 literature	 reviews	and	 theory,	 this	
decision	 was	 beneAicial	 not	 only	 from	 a	 design	 standpoint	 but	 also	 because	 it	 improved	 the	
accessibility	 of	 the	 interface.	 The	 background	 effectively	 helps	 users	 differentiate	 between	
interactive	foreground	elements,	such	as	buttons	and	icons,	and	the	background.	This	reduces	the	
cognitive	load,	as	users	can	more	easily	identify	actionable	elements	without	visual	distractions.	
It	also	reduces	kinetic	load	by	making	it	easier	to	navigate	the	app,	as	users	do	not	need	to	spend	
extra	effort	distinguishing	between	interface	components.		

However,	the	design	is	still	not	devoid	of	any	limitations.	It	can	be	considered	that	users	with	vison	
deAiciencies	have	the	potential	to	struggle	with	properly	distinguishing	certain	elements	due	to	
their	colour	palettes.	This	issue	may	be	explored	in	future	updates,	where	features	allowing	for	
fully	customisable	interfaces	may	be	possible.	

4.1.3. Toolbar	ModiPication	
The	objective	of	this	feature	was	to	redesign	the	toolbar	to	be	more	intuitive	and	assessable	as	
seen	 below	 in	 Figure	 4-3.	 It	 should	 provide	 better	 ergonomics	 by	 being	 strategically	 placed	
appropriately	and	have	better	button	layout	to	reduce	confusion.	The	new	design	allows	users	to	
easily	be	able	locate	the	toolbar	at	the	bottom	of	the	screen.		The	toolbar	design	also	differentiates	
the	main	TTS	button	by	being	placed	at	 the	cantered	 for	better	visuals.	Static	colour	was	also	
added	to	reduce	confusion.		The	feature	was	tested	across	various	iOS	devices	to	ensure	consistent	
behaviour	during	touch	and	navigation.	The	toolbar	was	tested	in	different	scenarios	and	edge	
cases.	Any	bugs	or	issues	detected	during	this	phase	were	promptly	addressed	and	mitigated.	
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Figure	4-3	-	Snapshot	of	the	talk	for	me	app,	highlighting	the	toolbar	design	addition.	

Initially,	the	toolbar	was	located	at	the	top	with	no	labels	and	a	transparent	border,	but	this	led	to	
user	 confusion.	 The	 design	 of	 the	 bottom	 toolbar	 was	 inspired	 by	 the	 recognition	 that	 most	
industry-standard	 mobile	 apps	 place	 their	 toolbars	 at	 the	 bottom	 of	 the	 screen,	 which	 was	
observed	in	the	previously	analysed	UI	designs.	Compared	with	similar	apps,	the	new	toolbar	is	
consistent	with	most	popular	market	apps,	it	aligns	with	best	practices	in	usability	and	navigation,	
improving	 the	 overall	 UX.	 Relocating	 it	 to	 the	 bottom	 aligns	with	 user	 expectations,	 reducing	
cognitive	load	since	users	are	already	accustomed	to	this	placement.	Furthermore,	because	the	
primary	function	of	the	app	is	text-to-speech	(TTS),	It	was	decided	to	make	the	central	element	of	
the	toolbar	a	large,	easily	recognizable	microphone	icon.	This	was	a	custom	designed	icon	very	
similar	to	the	logo	of	the	app.	This	visual	cue	immediately	conveys	the	main	purpose	of	the	app.	
The	microphone	icon	is	positioned	in	the	canter	of	the	toolbar,	larger	than	the	other	buttons,	and	
visually	distinct.	This	makes	it	intuitive	for	users	to	press	without	needing	additional	guidance,	
thus	reducing	cognitive	effort.	Placing	the	most	frequently	used	button	in	the	centre	also	reduces	
kinetic	 load,	as	users	can	quickly	 Aind	and	access	 it.	The	 toolbar	now	has	clear	 labels	 for	each	
button,	which	further	reduces	user	confusion	and	improves	navigation,	contributing	to	a	more	
intuitive	and	accessible	interface.	

In	terms	of	limitations,	users	in	low-light	conditions	could	Aind	the	light-coloured	toolbar	difAicult	
to	see.	The	current	colour	scheme	of	the	tool	bar	is	fully	white.	A	future	solution	which	would	
include	adding	a	dark	mode	or	customizable	colour	options.		

4.1.4. Element	layout	and	alignment	
Based	on	literature	review	and	similar	apps,	its	best	practice	to	maintain	sufAicient	white	space	
in	the	user	interface.	It	is	also	an	industry	standard	to	logically	grouping	of	elements.	Hence,	the	
object	was	to	update	UI	to	be	in	line	with	modern	usability	standards,	improving	the	clarity	and	
ease	of	navigation	as	exhibited	in	Figure	4-4.	The	layout	and	alignment	of	the	interactive	
elements	should	be	less	cluttered	and	increase	user	friendliness.			
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Figure	4-4	-	Snapshot	of	the	talk	for	me	app,	highlighting	the	toolbar	design	addition	

The	initial	design	was	problematic	due	to	the	cluttered	layout,	where	elements	were	packed	too	
closely	together,	making	it	difAicult	for	users	to	distinguish	between	them.	This	clutter	not	only	
reduced	the	app’s	visual	appeal	but	also	increased	cognitive	 load,	 forcing	users	to	spend	more	
effort	 deciphering	 the	 interface.	 Without	 proper	 spacing,	 the	 app	 became	 overwhelming,	
negatively	impacting	UX.	

The	 items	are	now	aligned	consistently	with	more	space	between	them,	resulting	 in	a	cleaner,	
more	organized	interface.	Dedicated	space	to	house	new	features	was	designed	into	the	ui.	The	
layout	allows	for	easier	navigation,	which	reduces	cognitive	load	and	improving	the	overall	UX.	
The	placement	of	items	was	signiAicantly	improved	by	switching	to	solid	white	backgrounds	for	
the	 cards,	 as	 opposed	 to	 the	 previous	 transparent	 layout.	 This	 change	 enhances	 the	 contrast	
between	elements,	making	 it	easier	 to	differentiate	between	 interactive	 items	 like	 images	and	
buttons.	 The	 new	 card	 layout	 ensures	 consistent	 spacing,	 maintaining	 uniformity	 across	 the	
interface,	which	contributes	to	a	cleaner,	more	visually	organized	design.	However,	a	limitation	
exists	in	Swift	Ui’s	spacing	system.	Unlike	design	software	and	web	development	that	allows	for	
precise	 pixel-based	 spacing,	 Swift	 UI	 requires	 developers	 to	 estimate	 the	 spacing	 between	
elements.	This	lack	of	precise	control	makes	the	feature	slightly	less	robust,	as	the	layout	may	vary	
slightly	across	different	screen	sizes	and	resolutions.	Another	limitation	may	also	be	that	some	
users	may	 still	 need	 larger	 icons	or	 additional	 grouping	 for	 accessibility	 reasons.	 This	 can	be	
explored	further	 in	future	updates,	 fully	customisable	UI	maybe	possible.	Additionally,	 the	app	
now	supports	the	option	to	add	categories	and	restaurants.	Instead	of	integrating	these	features	
in	a	non-uniform	manner,	 extra	 space	was	considerately	allocated	 to	house	 these	additions.	A	
white	board	was	added	at	the	top	of	the	screen,	visually	consistent	with	the	existing	items.	This	
board	ensures	that	these	features	are	well-integrated	without	disrupting	the	Alow	of	the	interface.	
By	 keeping	 the	 design	 consistent,	 users	 can	 intuitively	 understand	 where	 new	 features	 are	
located,	reducing	both	cognitive	and	kinetic	load,	and	improving	overall	user-friendliness.		

The	 update	was	 tested	 across	 various	 iOS	 devices	 to	 ensure	 consistent	 behaviour	 and	 layout	
across	different	screen	sizes.	The	layout	was	tested	in	multiple	scenarios,	 including	edge	cases	
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where	 the	 app	 was	 used	 in	 different	 resolutions	 and	 orientations.	 Any	 bugs	 related	 to	
misalignment	or	layout	were	resolved.	

4.1.5. Categories	Ribbon	
During	the	requirement	analysis	phase,	the	category	ribbons	feature,	shown	below	in	Figure	4-5	
Snapshot	of	categories	ribbon	on	top	of	the	home	pagewas	introduced	to	create	a	more	visually	
appealing	and	accessible	way	for	users	to	explore	both	categories	and	restaurants,	replacing	the	
previous	cluttered	layout.	This	approach	leverages	the	popularity	of	social	media-style	interaction	
to	make	browsing	restaurants	quick	and	enjoyable.	This	was	particularly	important	for	enhancing	
user	engagement	and	providing	an	efAicient	means	to	help	users	quickly	 identify	 their	choices	
without	scrolling	through	traditional	long	lists.	

	

Figure	4-5	Snapshot	of	categories	ribbon	on	top	of	the	home	page	

In	the	design	phase,	A	mock-up	was	created	to	demonstrate	how	categories	and	restaurants	would	
be	displayed	within	the	ribbon	interface,	as	shown	in	Figure	4-1.	By	clicking	on	the	heading,	users	
can	toggle	between	categories	and	restaurants.	The	interactive	ribbon	showcases	user-deAined	
categories	 alongside	 nearby	 restaurants	 in	 a	 visually	 appealing	 format.	 For	 restaurants,	 the	
ribbons	highlight	key	information,	such	as	logos	and	names,	using	a	circular	design	to	enhance	
recognizability.	The	categories	on	the	other	hand	just	show	the	a	 ‘folder’	 icon	for	now.	This	UI	
solution	offers	a	smooth	and	intuitive	browsing	experience	by	incorporating	swipe	functionality,	
consistent	branding,	and	seamless	toggling	between	categories	and	restaurants.	These	features	
enable	users	to	easily	explore	and	quickly	familiarize	themselves	with	nearby	dining	options.	

During	the	implementation	phase,	the	category	UI	is	implemented	using	a	uniAied	ScrollView	that	
allows	 navigation	 between	 categories	 and	 restaurants	 via	 a	 toggle	 button.	 The	 interface	 is	
structured	with	 using	 Swift	 UI’s	 stack	 views	 to	 ensure	 that	 the	 elements	 are	 appealing,	 with	
rounded	corners	and	shadow	effects	to	distinguish	the	background.	The	user	can	toggle	between	
viewing	categories	and	restaurants	by	clicking	a	button,	which	changes	its	label	and	colour	based	
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on	the	current	state.	Below	this,	a	horizontal	ScrollView	displays	either	categories	or	restaurants	
as	 swipe-friendly	 ribbons.	 Categories	 are	 displayed	with	 ‘folder’	 icons	 alongside	 their	 names,	
while	 restaurants	 are	 represented	 with	 circular	 thumbnails	 that	 include	 restaurant	 logos	 or	
photos	 captured	 from	 Spoonacular’s	 API.	 Users	 can	 interact	 with	 categories	 and	 restaurants	
through	NavigationLink,	allowing	them	to	explore	more	details,	and	the	UI	supports	drag-and-
drop	functionality	to	reorder	categories.	Context	menus	are	also	integrated,	enabling	users	to	edit,	
delete,	 or	 modify	 categories	 and	 restaurants	 directly	 from	 the	 ribbon.	 The	 overall	 design	
encourages	smooth	navigation	and	interaction,	making	it	easy	for	users	to	toggle	between	views	
and	quickly	access	the	relevant	content.	A	snippet	of	the	code	which	achieves	this	can	be	seen	on	
Appendix	C.	

In	 the	 testing	phase,	Special	attention	was	given	 to	how	the	story	ribbons	 interacted	with	 the	
existing	UI,	ensuring	they	remained	Aixed	at	the	top	of	the	screen	while	users	scrolled	through	
other	content,	an	example	of	this	can	be	seen	in	Appendix	D.	Testing	was	also	done	to	ensure	that	
the	restaurants	were	being	accurately	shown	as	seen	in	Appendix	C.	

The	 category	 ribbons	 were	 effective	 in	 making	 browsing	 restaurants	 intuitive	 and	 visually	
appealing,	aligning	with	the	project’s	goal	to	reduce	cognitive	load	for	neurodivergent	users.	This	
feature	made	exploring	dining	options	more	interactive	and	engaging,	enhancing	the	overall	UX	
by	introducing	a	familiar	interface	pattern. 

The	use	of	category	ribbons	is	like	the	visual	interfaces	found	on	social	media	apps	like	Instagram	
and	Snapchat,	which	were	designed	to	encourage	casual	exploration	and	engagement.	Applying	
this	concept	to	the	restaurant	browsing	feature	made	it	not	only	recognizable	but	also	simple	to	
use,	showing	a	clear	beneAit	in	ease	of	use	compared	to	traditional	menus	or	lists.	

This	 feature	 faced	 scalability	 challenges,	 especially	 in	 locations	with	 a	 high	 density	 of	 nearby	
restaurants	as	seen	in	Appendix	E.	As	the	number	of	restaurants	increased,	the	ribbon	became	
less	effective,	with	users	potentially	feeling	overwhelmed	by	too	many	options	to	browse	through,	
diminishing	the	intended	convenience	as	seen.	Additionally,	in	areas	with	poor	data	connectivity,	
loading	numerous	restaurant	icons	and	menus	led	to	noticeable	delays,	further	impacting	the	UX.	
These	issues	highlight	the	need	for	optimization,	such	as	better	Ailtering	or	pagination,	to	maintain	
smooth	functionality	and	user	engagement,	even	in	data-constrained	environments.	

4.1.6. Multiple	and	Past	Responses	
The	result	of	the	work	done	was	a	screen	that	provides	the	user	the	ability	to	select	from	several	
responses	that	are	applicable	to	the	user.	With	the	behaviour	of	calling	 for	both	retrieving	the	
previously	used	response	and	the	generated	sentences	synchronously	what	was	observed	was	
that	often	the	retrieved	response	was	outperforming	the	generated	sentences,	which	is	ideal	as	at	
this	stage	the	apps	performance	is	already	being	improved	for	the	user	as	there	is	less	of	a	time	
gap	between	selecting	the	words	and	speaking.	See	Figure	4-6	where	the	demo	shows	that	the	
general	layout	and	functionality	of	the	app	was	kept	the	same,	where	the	user	has	the	ability	to	
edit	generated	text,	but	with	the	added	ability	to	select	from	a	number	of	different	options,	as	well	
as	 those	 that	 might	 have	 previously	 been	 used.	 It	 is	 worth	 noting	 that	 some	 performance	
differences	were	seen	when	generating	more	than	1	sentence,	and	as	a	result	this	would	be	further	
discussed	in	4.3.1	as	to	if	there	was	a	detrimental	result	of	using	this	feature.	
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Figure	4-6	-	Display	of	the	Multiple	and	Past	Response	Features	for	Demo	Words	"Pepsi"	and	"Fries"	

	

4.2. Location-based	Systems	
Heeding	to	the	approach	described	in	section	3.2,	the	following	outcomes	were	achieved:	location-
aware	 restaurant	 menu	 items,	 location-aware	 restaurants,	 and	 location-based	 sorting	 of	
information.	

4.2.1. Location	Aware	Menusa	
During	 the	 requirement	 analysis	 phase,	 the	 client	 requested	 a	 location-aware	 menu	 that	
automatically	displays	the	restaurant's	menu	items	when	a	user	enters	its	vicinity	shown	below	
in	Figure	4-5	Snapshot	of	categories	ribbon	on	top	of	the	home	page.	This	feature	was	important	
to	 the	 client	 as	 it	 enhances	 intuitiveness	 and	 signiAicantly	 improves	 ease	 of	 use,	 particularly	
beneAiting	neurodivergent	users.	
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Figure	4-7	-	Snapshot	of	menu	items	being	called	in	Subway	

	

In	the	design	phase,	a	mock-up	was	developed	for	the	interaction	between	the	app	and	the	API	
was	designed,	as	demonstrated	in	Appendix	F,	to	showcase	real-time	data	Alow	from	Spoonacular	
API	to	the	application	to	show	menu	data.	

The	 implementation	phase	 involved	 integrating	 the	 Spoonacular	API	 to	dynamically	 Ailter	 and	
display	menu	items	based	on	the	user's	proximity	to	restaurants.	The	CoreLocation	framework	
was	utilized	to	track	the	user's	real-time	location.	This	data	was	passed	to	the	API,	which	retrieved	
restaurant	details	based	on	the	latitude	and	longitude.	A	function	was	created	and	used	alongside	
the	user's	coordinates	to	fetch	nearby	restaurants	within	a	speciAied	radius,	and	the	results	were	
cached	in	the	local	database	of	the	user’s	phone	for	quick	access.	

Once	a	restaurant	was	identiAied,	the	app	dynamically	fetched	its	corresponding	menu	items	using	
a	 dedicated	 function	 that	 queried	 the	 API	 for	menu	 data	 speciAic	 to	 that	 restaurant.	 The	 API	
returned	a	list	of	relevant	menu	items,	which	were	then	displayed	in	a	vertical	grid	layout	within	
the	 app's	 user	 interface.	 This	 grid	 layout	 ensured	 an	 organized	 and	 visually	 appealing	
presentation	of	the	menu	items,	allowing	for	efAicient	browsing	and	easy	access	to	information,	
thus	enhancing	the	overall	UX.	

This	system	in	the	implementation	ensured	that	users	would	automatically	see	menu	items	from	
restaurants	within	their	vicinity	without	manual	input,	creating	a	seamless,	real-time	interaction	
between	the	user’s	location	and	available	dining	options.	A	snippet	of	the	code	which	achieved	
this	can	be	seen	in	Appendix	G.	

During	the	testing	phase,	the	menu	feature	was	tested	across	multiple	locations	to	ensure	that	the	
location-based	 functionality	 operated	 seamlessly	 and	 delivered	 accurate	 results.	 Comparisons	
were	conducted	in	various	environments	to	assess	the	feature's	precision	and	to	conAirm	that	the	
results	met	 the	client’s	quality	 standards.	Additionally,	 testing	was	performed	across	different	
types	 of	 restaurants,	 such	 as	 fast	 food	 and	 sit-down	 dining,	 differentiating	 them	 using	
Spoonacular’s	 API	 to	 ensure	 accurate	 categorization	 and	 menu	 display.	 Detailed	 distinctions	
between	different	restaurant	types	and	their	displayed	menus	can	be	seen	in	Appendix	H.	
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The	 outcome	 successfully	 aligned	 with	 the	 project's	 aim	 of	 increasing	 user	 convenience	 by	
providing	automatic	menu	updates	based	on	location.	By	reducing	the	need	for	users	to	manually	
search	for	menus,	the	feature	enhanced	the	overall	efAiciency	of	the	UX.		

This	 feature	resembles	 the	 functionality	 found	 in	apps	 like	Yelp	and	Google	Maps,	which	offer	
location-based	 restaurant	 information.	 The	 location-aware	 menu	 was	 developed	 to	 provide	
similar	automatic	updates	but	tailored	to	personal	preferences	and	without	requiring	user	input.	
The	project	matched	existing	standards	 for	convenience	and	went	 further	 in	 its	 focus	on	user	
accessibility,	particularly	for	individuals	needing	simpler	interfaces.	

One	 limitation	 of	 the	 location-aware	 menu	 feature	 was	 the	 accuracy	 of	 location	 detection,	
particularly	in	environments	with	poor	GPS	signals,	such	as	densely	built	urban	areas.	Rounding	
GPS	coordinates	to	six	decimal	places	occasionally	resulted	in	slight	discrepancies	in	pinpointing	
user	locations.	Additionally,	API	pricing	constraints	limited	the	number	of	menu	items	that	could	
be	displayed,	which	is	why	only	a	subset	of	items	is	shown	initially.	Another	challenge	was	that	
Spoonacular's	API	does	not	always	provide	complete	images	for	all	menu	items,	leading	to	some	
instances	where	no	image	is	displayed.	The	feature	is	also	North	America-focused,	and	coverage	
outside	this	region,	such	as	in	Australia,	is	currently	unavailable.	Furthermore,	all	menu	items	are	
currently	clustered	onto	a	single	page,	making	it	necessary	to	implement	Ailtering	options	to	better	
organize	them	by	categories	or	meal	types	for	easier	browsing.	

Some	limitations	impacted	the	overall	reliability	of	the	feature,	particularly	due	to	the	necessity	
of	rounding	GPS	coordinates,	which	occasionally	led	to	minor	discrepancies	in	restaurant	location	
accuracy.	Although	generally	acceptable	for	most	users,	these	slight	inaccuracies	could	affect	the	
precision	of	nearby	restaurant	displays.	Additionally,	API	pricing	constraints	limited	the	number	
of	menu	items	returned,	reducing	the	depth	of	the	results	provided	to	users.	The	lack	of	complete	
images	from	the	Spoonacular	API	further	detracted	from	the	visual	experience,	as	certain	menu	
items	appeared	without	accompanying	images.	Another	limitation	is	the	feature’s	focus	on	North	
American	restaurants,	making	it	less	relevant	for	users	in	other	regions,	such	as	Australia.	The	
clustering	of	all	menu	items	on	a	single	page	also	contributed	to	a	cluttered	interface,	highlighting	
the	 need	 for	 more	 reAined	 Ailtering	 and	 categorization	 options.	 Future	 improvements	 could	
address	these	issues	by	exploring	more	precise	location	technologies,	expanding	API	usage	for	
richer	 data,	 and	 implementing	 better	 Ailtering	mechanisms	 to	 enhance	 both	 the	 accuracy	 and	
usability	of	the	feature.	

4.2.2. Location	Aware	Restaurants	
During	 the	requirement	analysis	phase,	 the	 location-aware	restaurant	 feature	was	required	 to	
enhance	user	convenience	by	automatically	displaying	restaurant	menus	when	users	are	nearby	
shown	below	in	Figure	4-5	Snapshot	of	categories	ribbon	on	top	of	the	home	page.	This	feature	
was	particularly	important	for	improving	accessibility,	allowing	users,	especially	those	who	may	
be	neurodivergent,	to	have	a	more	intuitive,	seamless	interaction	with	the	app.	By	removing	the	
need	for	manual	adding	of	restaurant	categories,	this	functionality	signiAicantly	reduces	mental	
load	 and	 provides	 users	 with	 immediate,	 context-relevant	 information.	 Furthermore,	 this	
requirement	is	a	prerequisite	to	the	location-aware	menu	items.	

	
Figure	4-8	-	Snapshot	of	Restaurant	Ribbon	
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In	 the	design	phase,	 a	mock-up	was	developed	 to	 showcase	how	 the	 app	dynamically	 adjusts	
based	on	the	user’s	location,	as	demonstrated	in	Figure	4-1.	Additionally,	the	interaction	between	
the	app	and	the	API	was	also	designed	to	present	real-time	data	Alow	from	Spoonacular	API	to	
application	as	seen	in	Appendix	F	to	show	restaurant	data.	

The	 implementation	phase	 involved	using	 the	 same	detection	 systems	 implemented	 for	menu	
items,	a	Spoonacular’s	API	was	again	used	to	fetch	and	display	nearby	restaurants	based	on	the	
user’s	real-time	location.	A	function	for	searching	nearby	restaurants	was	created	to	query	the	
API	using	the	user’s	latitude	and	longitude.	This	function	fetched	restaurant	details	such	as	names,	
coordinates,	and	logo	images	within	a	deAined	radius	of	the	user's	location.	The	coordinates	were	
rounded	 to	 six	 decimal	 places	 to	 account	 for	 the	 precision	 limits	 of	 Swift’s	 simulation	
environment,	 ensuring	accuracy	 in	 location	detection.	The	 results	were	 then	cached	 locally	 to	
enable	quick	access	and	improve	overall	performance,	reducing	the	need	for	repeated	API	calls.	

Once	the	nearby	restaurants	were	identiAied,	the	results	were	cached	locally	for	quick	access.	The	
app	then	dynamically	displayed	the	nearest	restaurants	using	the	fetched	data.	The	information	
was	 presented	 in	 a	 scrollable	 and	 interactive	 ribbon	 interface,	 allowing	 users	 to	 effortlessly	
browse	 restaurants	 nearby.	 This	 interface	 was	 designed	 to	 update	 in	 real-time	 as	 the	 user's	
location	changed,	providing	a	seamless	interaction	between	the	app	and	geolocation	data.		

This	system	enabled	the	automatic	retrieval	and	presentation	of	restaurant	data	without	the	need	
for	manual	input,	delivering	a	responsive	and	location-aware	dining	experience.	A	snippet	of	the	
code	which	achieved	this	can	be	seen	in	Appendix	I.	

With	 this	 setup	 in	 the	 implementation,	 the	 application	 Airst	 dynamically	 queries	 for	 nearby	
restaurants	based	on	the	user’s	location	using	CLLocationManager.	Once	the	relevant	restaurants	
are	 identiAied,	 the	app	then	performs	a	second	query	to	 fetch	detailed	 information	about	each	
restaurant,	such	as	menu	items	and	images.	This	layered	approach	ensures	that	restaurant	data	
is	contextually	relevant	and	accurate	based	on	the	data	provided	by	Spoonacular,	providing	users	
with	 a	 smooth	 and	 efAicient	 browsing	 experience.	By	handling	 location-based	 and	 restaurant-
speciAic	 queries	 sequentially,	 the	 app	 minimizes	 user	 effort	 while	 delivering	 tailored	 dining	
options	in	real	time.	

In	 the	 testing	 phase,	 the	 app	 was	 tested	 using	 the	 Swift	 simulator	 to	 validate	 geolocation	
functionality.	Due	to	the	simulator's	limitations	on	decimal	precision	for	latitude	and	longitude,	it	
was	necessary	to	round	coordinates	to	6	decimal	places	to	maintain	consistency	and	accuracy.	
While	this	rounding	slightly	altered	the	detected	location,	the	deviation	was	minimal—generally	
resulting	in	an	error	of	just	a	few	meters.	SpeciAically,	rounding	to	6	decimal	places	introduced	an	
error	 of	 approximately	 0.11	 meters	 (or	 11	 cm),	 which	 was	 considered	 acceptable	 for	 the	
application's	requirements.	A	detailed	example	of	this	conversion	is	provided	in	Appendix	J.	

To	 add,	 extensive	 tests	 were	 also	 made	 using	 both	 simulated	 environments	 and	 real-world	
scenarios,	such	as	malls,	standalone	restaurants,	and	lesser-known	locations.	Tested	the	feature	
to	 verify	 that	 the	 correct	 menu	 appeared	 reliably	 upon	 user	 arrival	 at	 speciAic	 restaurants,	
ensuring	 the	 feature	 was	 responsive	 and	 accurate.	 Results	 for	 different	 areas	 can	 be	 seen	 in	
Appendix	K.	

The	 location-aware	 restaurant	 features	 effectively	 supported	 the	 project’s	 broader	 goal	 of	
providing	context-sensitive	information	at	the	right	moment.	This	feature	allowed	users	to	see	
restaurants	in	their	proximity	without	requiring	manual	searches,	making	it	easier	to	discover	
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and	choose	a	nearby	dining	option.	This	objective	was	largely	achieved	as	indicated	by	positive	
user	feedback	on	the	feature’s	intuitiveness.	

Similar	to	location-based	restaurant	listing	applications	such	as	Foursquare,	this	feature	offered	
proximity-based	suggestions.	Unlike	traditional	search-based	approaches,	this	feature	proactively	
presented	 information	 to	users,	aligning	with	 trends	 towards	context-aware	systems	aimed	at	
enhancing	 user	 convenience.	 The	 addition	 of	 personalized	 presentation	 also	 reAlected	 more	
modern	approaches	in	user-centric	app	design.	

The	primary	limitation	of	the	location-aware	restaurant	feature	occurred	in	environments	with	
overlapping	signals,	such	as	food	courts,	where	the	app	sometimes	struggled	to	prioritize	which	
restaurant	to	display	Airst.	This	issue	was	further	compounded	by	occasional	inconsistencies	in	
location	services,	particularly	indoors,	where	GPS	accuracy	is	often	reduced.	To	manage	API	load	
and	improve	efAiciency,	restaurant	searches	using	the	API	were	designed	to	trigger	only	when	the	
user	pulls	down	 to	 refresh	 the	app,	 rather	 than	 continuously	polling.	While	 the	 current	 setup	
leverages	 a	 local	 database	 to	 store	 restaurant	 data	 once	 retrieved,	 implementing	 an	 external	
database	could	enhance	scalability	and	reduce	reliance	on	repeated	API	calls.	However,	the	client	
opted	to	use	the	pull-down	refresh	method	for	this	phase	to	demonstrate	concept	work.	

Additionally,	API	pricing	constraints	limited	the	amount	of	data	that	could	be	retrieved,	resulting	
in	only	partial	 restaurant	 information	being	displayed.	Since	 the	 feature	relies	heavily	on	data	
from	Spoonacular,	it	is	primarily	North	America-focused,	restricting	its	usefulness	in	regions	like	
Australia.	Furthermore,	some	restaurants	in	the	database	lack	images,	which	detracts	from	the	
overall	 visual	 experience.	 These	 limitations	 highlight	 the	 need	 for	 improved	 Ailtering,	
prioritization	 logic,	 expanded	 regional	 coverage,	 and	 enhanced	 data	 completeness	 in	 future	
iterations.	

The	 limitations	 slightly	 affected	 the	 precision	 of	 proximity-based	 restaurant	 identiAication,	
particularly	 in	 crowded	 areas	 like	 food	 courts,	 where	 overlapping	 signals	 could	 cause	minor	
inconveniences	for	users.	Despite	this	challenge,	the	feature	remained	largely	effective,	offering	
users	 a	 signiAicant	 level	 of	 convenience	 over	manually	 searching	 for	 nearby	 restaurants.	 The	
overall	 UX,	 while	 not	 Alawless,	 still	 provided	 substantial	 value	 in	 simplifying	 the	 process	 of	
discovering	local	dining	options.	

4.2.3. Location	Based	Sorting	of	Information	
The	result	of	implementing	this	queried	sorting	solution	is	a	product	that	can	actively	sort	based	
on	the	user’s	recent	behaviour,	seen	in	Figure	4-9.	The	code	for	the	queries	used	can	be	seen	in	
Appendix	L.	
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Figure	4-9	-	Location	Based	Sorting	Prioritising	recently	Selected	Items	from	the	current	location	

	

4.3. Large	Language	Models	
As	a	part	of	this	project,	exploring	the	improvement	of	readily	available	LLMs	was	essential	to	
address	 the	 need	 of	 quick	 and	 accurate	 responses	 from	 an	 LLM.	 LLMs	 provide	 the	 backbone	
functionality	of	the	application,	due	to	their	ability	to	generate	the	sentences	required	for	users	
to	“speak”.	

This	section	presents	the	testing	that	was	completed	on	the	available	LLM	models,	seen	in	Table	
3-1,	for	their	speed	in	responding,	consistency	in	speed,	relevance	of	results,	as	well	as	what	work	
was	done	with	Prompt	Engineering	to	improve	the	performance	of	some	of	the	worse	performing	
models.	With	the	intentions	that	repeating	similar	improvements	in	this	area	could	lead	to	some	
performance	gains	in	other	models.		

4.3.1. Performance	Testing	
With	the	testing	complete,	the	results	of	each	of	the	tests	could	be	compared	to	determine	the	best	
performing	Large	Language	Models	 for	 the	applications	use	case.	 Initially,	 the	models	were	all	
tested	over	the	4	datasets,	each	containing	100	entries	of	1-3	words,	measuring	the	time	taken	to	
receive	 a	 response.	 This	 was	 repeated	 3	 times	 for	 each	 entry,	 to	 ensure	 no	 outliers	 would	
drastically	affect	the	results,	with	the	results	of	averaging	the	3	runs	for	each	entry	displayed	in	
Figure	4-10.	With	the	mean	value	of	each	model	highlighted	in	Table	4-2.	
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Figure	4-10	-	Distribution	of	time	between	message	and	request	for	the	LLM	Models	available	in	
Table	3-1.	Completed	for	all	4	datasets	

Table	4-2	-	Mean	time	between	messages	as	displayed	in	Figure	4-10	

LLM Model Mean Time Between 
Messages (s) 

cohere.command-light-text-v14 0.649959 

gpt-3.5-turbo 0.824615 

gpt-3.5-turbo-16k 0.850663 

gpt-4-turbo  0.870907 

amazon.titan-text-lite-v1 (ap-southeast-2) 0.901023 

cohere.command-text-v14 0.956405 

gpt-4 0.991186 

amazon.titan-text-lite-v1 1.124882 
amazon.titan-text-express-v1 (ap-southeast-
2) 1.237762 

amazon.titan-text-express-v1 1.428332 

meta.llama2-13b-chat-v1 2.272046 

meta.llama2-70b-chat-v1 3.578716 

	

What	can	be	seen	in	s	large	numbers	of	outliers	that	could	mean	inconsistent	results,	even	if	the	
mean	is	low.	This	was	the	Table	4-2	is	that	the	Cohere	and	OpenAI	models	are	some	of	the	fastest	
models,	with	the	lowest	mean	response	times.	Despite	this,	it	can	also	be	noted	that	the	Cohere	
Models	 in	 Figure	 4-10	 posses	 the	 catalyst	 for	 determining	 the	 number	 of	 negative	 outliers	
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(outliers	 larger	 than	 the	 mean	 as	 we	 hope	 for	 a	 fast	 response),	 displayed	 in	 Table	 4-3	 and	
Appendix	M,	per	Model,	as	well	as	the	relevance	of	each	model.	As	described	in	3.3.1	it	was	not	
possible	for	quality	testing	of	the	returned	responses	to	be	conducted	due	to	the	manual	nature	
of	ranking	the	very	large	amount	of	data	generated	with	14,184	requests	made	in	total	over	all	
the	models	combined.	Instead,	relevance	was	determined	to	be	whether	the	response	contained	
all	 the	prompts	keywords,	as	described	 in	 the	prompt	this	 is	a	requirement.	Whilst	 this	 is	not	
perfect,	as	some	words	may	change	in	spelling	with	plurals	etc,	it	is	a	start,	and	most	deAinitely	
indicative	of	the	models	that	were	not	performing	the	required	task	whatsoever.	This	was	then	
plotted,	showing	the	amount	of	the	total	prompts	in	which	a	model	did	not	include	all	terms.		

Table	4-3	-	Number	of	outliers	which	are	greater	than	the	mean,	for	results	from	Figure	4-10	

LLM Model 
Outlier 
Count 

meta.llama2-13b-chat-v1 281 

meta.llama2-70b-chat-v1 181 

cohere.command-text-v14 109 

amazon.titan-text-lite-v1 105 

amazon.titan-text-lite-v1 (ap-southeast-2) 89 

cohere.command-light-text-v14 81 

amazon.titan-text-express-v1 (ap-southeast-2) 69 

amazon.titan-text-express-v1 47 

gpt-4 34 

gpt-3.5-turbo 29 

gpt-4-turbo 22 

gpt-3.5-turbo-16k 3 

	

	
Figure	4-11	-	Response	Relevance	for	All	Models	and	All	Datasets.	Where	BLUE	indicates	a	response	
that	contains	the	words	provided	in	the	prompt,	and	RED	those	which	did	not.	
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From	 Figure	 4-11	 it	 can	 be	 determined	 that	 previously	 well	 performing	 models	 such	 as	 the	
Amazon	Titan	Lite	models	often	do	not	include	the	words	provided	in	the	prompt,	and	as	such	
their	response	is	likely	not	relevant	to	the	request.	On	the	other	hand,	models	such	as	the	OpenAI	
models	performed	very	well,	with	almost	all	responses	being	relevant	for	the	testing	purposes.	

Using	this	information,	a	decision	can	be	made	for	which	LLM	model	would	be	suggested	for	use	
going	forward.	Due	to	its	comparable	performance	in	speed,	a	lack	of	many	outliers,	and	a	high	
relevancy	 score,	 GPT-4	 turbo	 or	 GPT-3.5	 turbo	 16k,	 both	 by	 OpenAI	 are	 the	 suggested	 LLM	
solutions	for	future	work.	The	choice	on	which	to	use	can	come	down	to	several	factors,	although	
notably	OpenAI	does	charge	more	for	GPT-4	models	on	most	payment	plans,	so	GPT-3.5	turbo	16k	
is	a	comparable	alternative	if	that	is	a	concern	in	our	use	case.	

4.3.2. Prompt	Engineering		
With	the	modiAied	prompt	seen	in	Figure	3-7	the	testing	was	completed,	testing	for	changes	to	the	
amount	of	preface	present,	the	speed	of	response,	and	the	relevance	of	the	responses	(whether	a	
response	contains	the	words	provided	in	the	prompt).		

What	was	discovered	in	attempting	to	improve	the	performance	of	the	models	through	prompt	
engineering,	was	that	the	higher	parameter	70b	model	was	much	more	willing	to	change,	to	avoid	
preface	then	that	of	the	13b	model.	This	 in	the	end	was	a	 limitation	of	our	results,	as	the	best	
performance	the	group	could	get	(using	the	prompt	from	Figure	3-7)	still	leaves	some	preface	for	
the	responses	from	the	13b	model.	Fortunately,	 though,	 this	preface	 is	relatively	consistent,	as	
seen	in	Appendix	N,	and	could	easily	be	stripped	prior	to	giving	to	the	user,	by	simply	searching	
for	“:”	characters	and	deleting	everything	before	that.	As	a	result,	it	was	deemed	insigniAicant	to	
attempt	to	work	further	on	the	prompt,	as	there	is	an	added	cost,	in	the	number	of	API	tokens	
used	in	attempting	a	longer	prompt,	in	comparison	to	a	shorter	prompt.		

On	the	other	hand,	the	70b	model	saw	no	preface	remaining.	This	is	possibly	due	to	the	higher	
parameter	count	leading	to	better	instruction	following,	and	more	consistent	results	with	what	is	
expressed	in	the	provided	prompt,	although	OpenAI	has	suggested	this	is	not	always	the	case	with	
LLM	Models	[36].		

To	begin,	 in	Figure	4-12	you	can	see	the	results	of	 testing	the	model	compared	to	its	previous	
performance	 in	 Table	 4-2,	 where	 a	 drastic	 improvement	 in	 performance	 can	 be	 seen	 for	 the	
revised	prompt,	where	 it	 averages	over	 a	 second	of	 improvement,	 simply	 from	 improving	 the	
prompt.	 It	 also	 can	 be	 seen	 in	 Appendix	 O	 where	 the	 revised	 prompt	Meta	models	 are	 now	
competitive	with	the	other	previously	best	performing	OpenAI	and	Cohere	models.	Notably	with	
the	70b	model	performing	better	than	the	13b,	which	is	signiAicant	since	it	is	typically	expected	
that	the	model	with	less	parameters	performs	faster,	especially	a	signiAicant	difference	such	as	13	
billion	to	70	billion.		
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Figure	4-12	-	Comparison	of	mean	time	to	receive	message	for	both	original	and	revised	Meta	

prompts.	

Furthermore,	the	revised	prompts	were	then	tested	for	their	relevance,	using	the	same	techniques	
described	 in	 3.3.1,	 with	 the	 results	 seen	 Figure	 4-13.	 This	 is	 again	 an	 improvement	 to	 the	
performance	of	the	Meta	models	seen	in	Figure	4-11,	and	is	an	indication	of	the	LLM	instead	of	
displaying	the	prompt,	or	a	large	amount	of	preface,	focusing	on	returning	a	relevant	response	to	
the	keywords	provided	by	the	user.		

	

	
Figure	4-13	-	Response	relevance	for	modi]ied	Meta	prompts	
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Chapter	5: Suggestions	for	Future	Work	
Whilst	the	group	feels	as	though	they	have	made	progress	in	improving	the	application	for	the	
betterment	of	the	user	base,	there	is	still	several	features	that	the	group	were	either	unable	to	
achieve	in	the	time	allowed	or	were	just	not	possible	at	this	given	time	(but	will	likely	be	soon).	

This	 section	covers	 said	 features,	 split	up	 into	 the	3	main	areas	of	work	 for	 this	project,	User	
Interface,	Location-based	Systems,	and	LLMs.		

5.1. User	Interface	
Although	 signiAicant	 improvements	were	made	 to	 the	 app,	 addressing	 nearly	 all	 the	major	UI	
issues,	there	are	still	several	areas	where	the	user	interface	can	continue	to	evolve	and	improve.		

One	of	the	signiAicant	recommendations	that	can	be	made	is	to	consider	is	adding	dark	mode	or	
customizable	themes.	This	would	relate	to	solving	the	problem	with	the	current	toolbar,	which	
may	be	hard	to	see	for	certain	individuals	with	visual	impairments	or	light	sensitivity.	Giving	users	
the	 option	 to	 switch	 between	 light	 and	dark	modes,	 or	 even	 change	 the	 color	 scheme,	would	
increase	the	accessibility	the	UI.		

Another	 important	 area	 to	 focus	 on	 is	 further	 improving	 layout	 control	 in	 SwiftUI.	 During	
development,	 one	 of	 the	 biggest	 challenges	was	 getting	 the	 spacing	 and	 alignment	 just	 right	
because	SwiftUI	doesn't	seem	allow	precise	pixel-based	control.	This	challenge	also	persistent	
when	 attempting	 to	 improve	 the	 sizing	 and	 placement	 user’s	 added	 images.	 This	 was	 later	
abandoned	due	to	such	issues.	Future	updates	could	potentially	explore	third-party	libraries	or	
further	 research	 SwiftUI	 for	 features	 or	 coding	 techniques	 that	might	 give	more	 control.	 This	
would	help	ensure	that	the	UI	doesn’t	have	inconsistencies	and	looks	the	same	on	all	devices.	

Father	expanding	testing	and	device	compatibility	is	another	recommendation.	While	the	app	has	
been	tested	on	a	variety	of	 iOS	devices,	the	emphasis	on	this	step	was	minimal.	 Increasing	the	
conAidence	that	the	features	work	well	on	older	models	and	different	screen	sizes	would	ensure	
that	everyone	can	have	a	consistent	experience.	

Implementing	a	feedback	system	for	users	would	also	be	a	signiAicant	addition	to	the	UI.	Allowing	
users	to	report	issues	or	suggest	improvements	directly	in	the	app	will	make	future	updates	more	
effective.	User	feedback	would	help	guide	future	changes,	ensuring	that	improvements	are	based	
on	real	user	experiences.	

Another	recommended	area	for	improvement	would	be	the	addition	of	a	help	feature.	The	app	
could	incorporate	tutorials	or	store	hints	that	guide	the	user	to	navigate	the	app.	In	the	case	a	user	
is	struggling	to	navigate	the	app,	a	pop-up	system	could	lead	the	user	to	what	to	press	next.	A	
tutorial	video	could	also	be	offered	when	the	app	is	Airst	loaded.	This	feature	could	signiAicantly	
increase	user-friendliness,	especially	when	considering	the	context	of	a	TTS	app	aimed	at	users	
with	accessibility	needs.	

Moving	 forward,	 it	 important	 to	 continuously	 research	 data	 for	 different	 designs	 styles	 and	
evaluating	 them	based	on	user	needs.	The	designs	should	also	be	compared	against	 the	 latest	
market	application	and	trends	to	ensure	the	application	is	up	to	market	standard.	Since	UI	design	
involves	visuals,	it	may	be	subjective	when	evaluating	its	success.	Hence,	it	would	be	suggested	to	
test	the	design	and	acquire	feedback	from	users	regarding	 its	appeal.	Regular	usability	testing	
with	our	target	user	base	will	help	identify	areas	for	improvement.	Once	designs	are	Ainalised,	
they	can	be	incorporated	with	in	future	updates.	
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5.2. Location-based	Systems	
For	the	Location-based	systems,	the	main	features	that	need	improvement	or	could	see	further	
progress	in	the	future	revolve	around	the	following:	privacy	concerns,	API	limitations,	regional	
coverage	of	selected	APIs,	as	well	as	further	utilizing	the	implemented	location	features	to	create	
more	features	around	suggesting	relevant	terms	to	the	user.	

5.2.1. Location-based	Privacy	Concerns	
Accessing	 user	 location	 data	 raises	 signiAicant	 privacy	 issues.	 To	 mitigate	 this,	 the	 app	 must	
implement	 robust	 security	measures,	 such	 as	 encryption,	 and	 offer	 transparent	 user	 consent	
prompts.	It	is	critical	to	clearly	communicate	how	data	will	be	used,	stored,	and	shared	to	build	
user	trust.	By	implementing	these	security	measures,	it	ensures	compliance	with	the	Australian	
Privacy	 Principles	 (APPs)	 which	 encompass	 rights	 around	 privacy	 protection	 such	 as	 the	
collection,	use	and	disclosure	of	personal	information	[37].	

5.2.2. API	Limitations	
One	of	the	main	limitations	encountered	during	the	project	was	related	to	API	usage	limits	and	
data	restrictions	imposed	by	the	Spoonacular	API.	These	limits	signiAicantly	impacted	the	number	
of	API	calls	allowed,	particularly	when	retrieving	real-time	data	across	multiple	restaurants	for	
their	images	and	menu	items.	Future	work	should	focus	on	optimizing	API	usage	by	implementing	
intelligent	caching	systems	that	minimize	the	need	for	repeated	data	retrieval	and	API	calls.	A	
more	sustainable	solution,	as	recommended	by	Dr.	Matthew	Berryman,	would	be	to	implement	
an	 external	 database,	 such	 as	 PostgreSQL,	 which	 offers	 powerful	 geospatial	 capabilities.	
PostgreSQL,	with	its	extensive	geospatial	packages,	would	allow	the	app	to	efAiciently	store	and	
query	 restaurant	 locations	 based	 on	 proximity	 as	 discussed	 in	 3.2.2.	 This	 would	 reduce	 the	
reliance	 on	 Spoonacular's	 API	 for	 restaurant	 location	 data,	 conserving	 API	 resources	 and	
signiAicantly	improving	performance.	While	this	option	was	considered	during	the	project,	time	
constraints	prevented	its	implementation.	However,	developing	this	database	in	future	iterations	
would	optimize	the	app’s	performance	and	expand	its	capabilities.	Alternatively,	utilising	the	local	
SQLite	 solution	 was	 also	 considered	 as	 a	 potential	 solution.	 Like	 PostgreSQL,	 SQLite	 offers	
functionality	to	perform	distance-based	searches,	though	it	is	more	limited	in	terms	of	available	
geospatial	 functions.	 However,	 SQLite	 has	 the	 advantage	 of	 being	 fully	 integrated	 into	 Swift	
through	a	native	package,	allowing	the	database	to	be	created	and	managed	directly	within	the	
app.	This,	along	with	its	small	size	and	ease	of	use,	made	SQLite	a	favorable	choice	for	local	storage	
during	the	project.	Future	developers	could	decide	to	either	expand	upon	SQLite’s	capabilities	or	
move	toward	implementing	PostgreSQL	if	more	advanced	geospatial	queries	become	necessary.	

5.2.3. Database	for	Caching	Menu	Items	
Another	 signiAicant	 limitation	 of	 this	 project	 is	 Spoonacular's	 focus	 on	 North	 American	 data,	
which	 reduces	 its	 functionality	 in	 other	 regions,	 such	 as	 Australia.	 To	 address	 this,	 future	
development	could	involve	integrating	an	alternative	API	that	offers	broader	geographic	coverage,	
including	more	 local	 restaurant	 data.	 Alternatively,	 as	 previously	mentioned,	 implementing	 a	
dedicated	external	database,	such	as	PostgreSQL	or	SQLite,	to	store	the	locations	and	details	of	
local	restaurants	would	ensure	that	the	app	remains	relevant	to	users	outside	North	America.	This	
solution	 would	 enable	 the	 app	 to	 handle	 region-speciAic	 restaurant	 data	 more	 efAiciently.	
Additionally,	incorporating	localization	features,	such	as	multi-language	support,	would	further	
improve	the	app’s	usability	for	a	global	audience,	enhancing	its	appeal	and	functionality	across	
various	regions.	
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5.2.4. Shared	Recommended	Terms	
Like	 the	work	done	 in	4.2.3,	 the	group	 initially	hoped	to	make	recommendations	 to	keywords	
often	 used	 by	 other	 users,	 in	 the	 same	 location	 and	 time.	 This	 was	 not	 achieved	 for	 several	
reasons,	including:	no	existing	infrastructure	to	set	this	up	with,	a	few	privacy	concerns	that	grew	
the	 scope	 of	 the	 feature,	 along	 with	 a	 lack	 of	 time	 by	 the	 time	 the	 feature	 was	 ready	 to	 be	
attempted.		

The	lack	of	existing	infrastructure	refers	to	the	need	for	a	secure,	likely	authenticated,	database	
that	exists	external	to	the	user’s	device,	which	can	store	all	the	requests	and	responses	sent	out.	
As	discussed	in	3.2.2,	there	was	a	need	for	a	relational	database,	as	the	existing	NoSQL	DynamoDB	
that	the	application	is	using	is	not	suitable	for	the	features	we	are	trying	to	setup.	Due	to	the	ease	
of	use,	the	local	SQLite	option	was	favoured	and	a	server/cloud	hosted	relational	database	which	
would	 require	 authentication	methods	 to	 keep	 it	 secure	was	 not.	 This	 goes	 onto	 the	 privacy	
concerns,	as	mentioned	in	5.2.1,	when	storing	user	information	on	the	server/cloud.	As	users	can	
submit	their	own	images,	there	would	be	a	need	for	having	the	user	approve	the	upload	of	each	
word,	prior	to	storing	them	outside	of	their	own	device.	This	extends	what	is	meant	to	be	an	easy	
process	to	add	each	keyword	and	is	not	in	the	spirit	of	what	we	were	trying	to	achieve	with	the	
application.	

The	group	still	acknowledges	 the	beneAit	of	adding	 this	 feature	 in	 the	 future	 though,	although	
instead	would	suggest	a	solution	similar	to	that	done	in	with	3.2.1,	where	instead	Talk	For	Me	
could	suggest	to	all	users	landmarks	found	on	Google	Maps,	using	images	from	the	same	location	
to	not	cross	over	users	information,	or	a	solution	that	does	not	use	images	uploaded	by	the	user,	
but	instead	a	vetted	(to	ensure	they	cannot	be	maliciously	impacted)	selection	of	the	most	used	
terms	by	all	users.		

5.3. Large	Language	Models		
As	AI,	and	LLM	technology,	has	made	large	improvements	in	the	past	couple	years	alone,	it	is	fair	
to	 say	 there	 is	 likely	 to	be	more	 and	more	 available	work	 to	 continue	with	 this	 in	 the	 future.	
Looking	into	the	immediate	future	though,	the	group	believes	there	is	potential	for	two	things	to	
be	implemented,	that	they	either	ran	out	of	time	to	complete,	or	just	was	not	within	the	scope	of	
the	work	 that	was	set	out	at	 the	start	of	 the	project:	 implementing	a	Local	LLM	Solution,	and	
improving	the	performance	testing	to	include	the	quality	of	the	message.		

5.3.1. Local	LLM	Solution	
In	the	Progress	Report	the	group	discussed	the	desire	to	implement	a	“Local	LLM	Solution”	by	
training	 a	 small	 LLM	 model	 capable	 of	 running	 on	 a	 mobile	 device,	 to	 achieve	 the	 same	
functionality	that	ChatGPT	currently	does	when	connected	to	the	internet.	As	mentioned	in	the	
Progress	 Report,	 Dr	 Matthew	 Berryman	 and	 others	 such	 as	 Bloomberg	 [38]	 speculated	 the	
announcement	of	a	native	LLM	solution	for	Apple	devices	mid-way	through	this	year.	As	expected,	
Apple	announced	“Apple	Intelligence”	to	be	their	on	device	AI	solution	with	LLM	adjacent	features	
[39].	What	this	meant,	was	there	was	less	of	a	reason	for	the	group	to	go	about	training	their	own	
model,	if	a	native	model	was	to	be	released	within	the	next	year.	So,	by	the	advice	of	Dr	Berryman,	
the	group	decided	to	withhold	from	this	task.		

For	future	work,	the	group	would	suggest	implementing	Apple	Intelligence	with	Talk	for	Me	for	a	
native	 locally	 ran	 LLM	 solution	 for	 the	 app.	 This	 should	 hopefully	 provide	 comparable	
performance,	 with	 the	 added	 beneAit	 on	 not	 necessarily	 requiring	 an	 internet	 connection	
(depending	on	how	Apple	Intelligence	ends	up	releasing).	
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5.3.2. Improved	Model	Performance	Testing	
As	mentioned	in	4.3.1,	the	quality	of	the	response	from	a	LLM	is	purely	subjective	and	is	hard	to	
measure,	with	the	group	only	being	able	to	measure	the	assumed	relevance	of	a	response.	Despite	
this	the	group	sees	the	potential	for	greater	performance	testing	in	the	measuring	of	more	models,	
speciAically	 those	 models	 trained	 for	 the	 speciAic	 functionality	 of	 acting	 as	 the	 Talk	 For	 Me	
application.	Unfortunately	training	models	was	not	a	task	the	group	was	able	to	achieve	in	the	
time	limits,	but	with	training	a	smaller	model	might	be	able	to	present	better	more	consistent	
results	that	would	beneAit	the	end	user.	This	could	also	translate	to	5.3.1	if	the	Ainal	product	was	
not	 to	 include	 Apple	 Intelligence	 but	 instead	 a	 highly	 trained	 smaller	 model	 that	 is	 mobile	
compatible.	This	would	require	likely	developing	a	dataset	appropriate	for	training	such	a	model,	
as	the	group	was	unable	to	Aind	such	a	dataset.	It	could	also	beneAit	from	potentially	surveying	the	
results	to	determine	which	results	are	the	most	appropriate	for	the	situation.	
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Chapter	6: Conclusion	
The	Talk	for	Me	project	has	made	signiAicant	progress	by	enhancing	UI,	integrating	location-based	
systems,	and	LLM	optimisation,	to	improve	the	UX	for	the	neurodivergent	user	base	of	the	app.		

This	was	done	by	cleaning	up	the	UI	to	give	it	a	more	modern	look,	taking	features	from	popular	
applications	 for	 IOS.	 The	 result	 was	 a	 UI	 that	 is	 easy	 for	 the	 user	 and	 requires	 little	 to	 no	
explanation	 to	 get	 started.	 In	 terms	 of	 UX,	 features	 were	 created	 that	 allowed	 for	 the	 user’s	
information	 to	be	used	 to	 customise	 the	experience	 for	 the	user,	making	 recommendations	 to	
menu	items	for	nearby	restaurants,	along	with	sorting	and	suggesting	a	user’s	previously	used	
terms	at	a	speciAic	time/location.	Finally,	testing	and	analysis	of	several	LLM	solutions	was	done	
to	verify	which	models	are	most	appropriate	to	continue	using	for	our	use	case.	It	was	decided	
that	 OpenAI’s	 GPT-4	 turbo	 and	 GPT-3.5	 turbo	 16k	 were	 the	 best	 options,	 dependent	 on	 the	
available	budget	for	API	tokens.	With	the	trade-off	of	the	more	expensive	gpt-4	turbo	depending	
on	the	token	allowance/rates	of	the	user.		

While	 the	 group	 sees	 plenty	 of	 potential	 in	 further	work	with	 this	 project,	with	 the	 constant	
changes	in	AI/LLM	technology,	as	well	as	the	listed	beneAits	in	Location	based	and	UI	features	still	
yet	to	be	implemented.		
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Appendices	
	

Appendix	A. Database	Manager	Initialisation	Code			
 

class DatabaseManager { 
    // Singleton instance 
    static let shared = DatabaseManager() 
    private var database: Connection? 
    // Init requests table 
    let requests = Table("requests") 
    let idExpression = Expression<Int64>("id") 
    let wordsExpression = Expression<String>("words") 
    let timeExpression = Expression<Date>("time") 
    let numberOfResponsesExpression = Expression<Int>("numberOfResponses") 
    let longitudeExpression = Expression<Double>("longitude") 
    let latitudeExpression = Expression<Double>("latitude") 
    // Init response table 
    let responses = Table("responses") 
    let responseId = Expression<Int64>("id") 
    let requestId = Expression<Int64>("requestId") 
    let response = Expression<String>("response") 
    let spokenResponse = Expression<String>("spokenResponse") 
 
    private init() { 
        do { 
            let fileManager = FileManager.default 
            let documentsDirectory = try fileManager.url( 
                for: .documentDirectory, 
                in: .userDomainMask, 
                appropriateFor: nil, 
                create: false 
            ) 
            let dbFilePath = documentsDirectory.appendingPathComponent("db.sqlite3
") 
 
            database = try Connection(dbFilePath.path) 
            print("Database path: \(dbFilePath.path)") 
            // Create the requests table 
            try database?.run(requests.create(ifNotExists: true) { tableDefinition 
in 
                tableDefinition.column(idExpression, primaryKey: .autoincrement) 
                tableDefinition.column(wordsExpression) 
                tableDefinition.column(timeExpression) 
                tableDefinition.column(numberOfResponsesExpression) 
                tableDefinition.column(longitudeExpression) 
                tableDefinition.column(latitudeExpression) 
            }) 
 
            // Create the responses table 
            try database?.run(responses.create(ifNotExists: true) { tableDefinitio
n in 
                tableDefinition.column(responseId, primaryKey: .autoincrement) 
                tableDefinition.column(requestId) 
                tableDefinition.column(response) 
                tableDefinition.column(spokenResponse) 
 
                // Foreign key constraint 
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                tableDefinition.foreignKey(requestId, references: requests, idExpr
ession) 
            }) 
        } catch { 
            print("Error initializing database: \(error)") 
        } 
    } 
 
    // Function to insert a request 
    func insertRequest( 
        words: [String], 
        time: Date, 
        numberOfResponses: Int, 
        longitude: Double, 
        latitude: Double 
    ) -> Int64? { 
        // Capitalize and sort words 
        let formattedWords = words 
            .map { $0.capitalized } 
            .sorted() 
 
        let wordsString = formattedWords.joined(separator: ", ") 
 
        do { 
            let insert = requests.insert( 
                wordsExpression <- wordsString, 
                timeExpression <- time, 
                numberOfResponsesExpression <- numberOfResponses, 
                longitudeExpression <- longitude, 
                latitudeExpression <- latitude 
            ) 
            let rowId = try database?.run(insert) 
            return rowId 
        } catch { 
            print("Insertion error: \(error)") 
            return nil 
        } 
    } 
 
    // Function to insert a response 
    func insertResponse(requestId: Int64, response: [String], spokenResponse: Stri
ng?) -> Int64? { 
        let formattedReponses = response.joined(separator: " --- ") 
        do { 
            // Prepare the insert statement 
            let insert = responses.insert( 
                self.requestId <- requestId, 
                self.response <- formattedReponses, 
                self.spokenResponse <- (spokenResponse ?? "") // Use an empty stri
ng if spokenResponse is nil 
            ) 
            let rowId = try database?.run(insert) // Execute insert 
            return rowId // Return the ID of the inserted response 
        } catch { 
            print("Insertion error: \(error)") 
            return nil 
        } 
    }  
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Appendix	B. Sample	LLM	Testing	Performance	Data		
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Appendix	C. 	Snippet	code	of	ScrollView	for	category	ribbon	

	
	 	

// Unified ScrollView for both the Ribbon and the Main Content 
                ScrollView { 
                    ZStack { 
                    RoundedRectangle(cornerRadius: 20) 
                        .fill(Color.white) 
                        .frame(maxWidth: .infinity, minHeight: 100)  // Set a fixed 
width for the background 
                        .shadow(color: .gray.opacity(0.2), radius: 5, x: 0, y: 2) 
                        .padding([.leading, .trailing], 16) // Padding to align the 
background nicely 
 
                        VStack { 
                             // Toggle Button for switching between categories and 
restaurants 
                             Button(action: { 
                                 showingCategories.toggle() // Toggle between 
categories and restaurants 
                             }) { 
                                 // Display "Categories" or "Restaurants" as the 
button label 
                                 Text(showingCategories ? "Categories" : 
"Restaurants") 
                                     .font(.headline) 
                                     .padding(.top, 10) 
                                     .foregroundColor(showingCategories ? 
Color.blue.opacity(0.90) : Color.purple.opacity(0.90)) 
                             } 
                              
                             ScrollView(.horizontal, showsIndicators: false) { 
                                 ZStack { 
                                     HStack(spacing: 20) { 
                                         // Conditional rendering based on whether 
we're showing categories or restaurants 
                                         if showingCategories { 
                                             // Display non-auto-created categories 
                                             ForEach(categories.filter { 
!$0.isAutoCreated }.sorted { $0.sortIndex < $1.sortIndex }) { category in 
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Appendix	D. Before	and	After	snapshots	demonstrating	the	
category	ribbon	staying	in	place	
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Appendix	E. Snapshots	of	excessive	restaurants	in	the	dashboard	
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Appendix	F. Mock-up	of	Application	and	API	interaction	
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Appendix	G. Snippet	code	of	menu	item	fetching	
	

	
	 	

// Fetch menu items for the restaurant (e.g., McDonald's) 
            fetchMenuItems(forRestaurant: name) { result in 
                DispatchQueue.main.async { 
                    switch result { 
                    case .success(let menuItems): 
                        var delayTime: TimeInterval = 0.0 
                        for (index, menuItem) in menuItems.enumerated() { 
                            delayTime = TimeInterval(index) * 1 // Add a 1-second 
delay between each item addition 
                            DispatchQueue.main.asyncAfter(deadline: .now() + 
delayTime) { 
                                // Check if there's an image URL 
                                if let imageURL = menuItem.image, let imageURLObject 
= URL(string: imageURL) { 
                                    // Asynchronously fetch image data and check for 
404 error 
                                    fetchImageData(from: imageURLObject) { imageData 
in 
                                        DispatchQueue.main.async { 
                                            // If image data is nil (including 404), 
proceed without an image 
                                            self.addItemWithCategory( 
                                                category: newCategory, 
                                                title: menuItem.title, 
                                                imageData: imageData 
                                            ) 
                                        } 
                                    } 
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Appendix	H. Snapshot	showcasing	menu	at	Subway	vs	Nashville	
Chicken	(5	item	parameter	input)	
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Appendix	I. Snippet	code	of	restaurant	fetching	and	caching	
	

	
	 	

private func determineCategoryBasedOnLocation(currentLocation: CLLocation) { 
            // Clear the list of pending categories 
            pendingCategories.removeAll() 
 
            for (restaurantName, locationData) in restaurantCache { 
                let restaurantLocation = CLLocation(latitude: locationData.latitude, 
longitude: locationData.longitude) 
                let radius: CLLocationDistance = 100.0 // Radius in meters for 
proximity 
 
                // Calculate the distance between the user's current location and the 
restaurant 
                let distance = currentLocation.distance(from: restaurantLocation) 
 
                if distance <= radius { 
                    // Check if the category already exists to avoid duplicates 
                    if !categories.contains(where: { $0.name == restaurantName }) { 
                        print("Found nearby restaurant within radius: 
\(restaurantName)") 
                        pendingCategories.append(PendingCategory( 
                            name: restaurantName, 
                            latitude: locationData.latitude, 
                            longitude: locationData.longitude, 
                            logoPhotos: locationData.logoUrl 
                        )) 
                    } else { 
                        print("Category \(restaurantName) already exists, skipping.") 
                    } 
                } 
            } 
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Appendix	J. Snippet	code	of	Location	Conversion	to	6	decimal	
places	
	

	
	 	

// Round latitude and longitude to 6 decimal places 
let roundedLatitude = Double(round(restaurant.latitude * 1_000_000) / 1_000_000) 
let roundedLongitude = Double(round(restaurant.longitude * 1_000_000) / 1_000_000) 



	
	

54	

	

Appendix	K. Snapshot	showcasing	menus	at	Local	North	American	
Cafes	(5	item	parameter	input)		
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Appendix	L. Query	Code	for	Location-based	Sorting	
func getMostRecentResponses(limit: Int = 15) -> [String] { 
        guard let location = LocationManager.shared.currentLocation else { 
            print("Current location is not available.") 
            return [] 
        } 
 
        do { 
            // Fetch the 15 most recent responses, 
            let responsesQuery = responses 
                .join(requests, on: responses[requestId] == requests[idExpression]
) 
                .order(responses[responseId].desc) 
                .limit(limit) 
 
            let allResponses = try database?.prepare(responsesQuery) 
            var wordsCount: [String: Int] = [:] 
 
            for responseRow in allResponses ?? AnySequence([]) { 
                let requestWords = responseRow[requests[wordsExpression]] 
                let requestLongitude = responseRow[ 
                    requests[longitudeExpression] 
                ] 
                let requestLatitude = responseRow[ 
                    requests[latitudeExpression] 
                ] 
 
                // Calculate distance from current location to the request locatio
n 
                let requestLocation = CLLocation(latitude: requestLatitude, longit
ude: requestLongitude) 
                let distance = requestLocation.distance(to: location) 
 
                if distance <= 500 { // within 500 meters 
                    let words = requestWords.split(separator: ", ").map { String($
0) } 
 
                    for word in words { 
                        wordsCount[word, default: 0] += 1 
                    } 
                } 
            } 
 
            // Find the top 3 most used words 
            let topWords = wordsCount.sorted(by: { $0.value > $1.value }).prefix(3
).map { $0.key } 
 
            return Array(topWords) 
 
        } catch { 
            print("Query error: \(error)") 
            return [] 
        } 
    } 
 
    func getRecentResponsesWithFallback() -> [String] { 
        let primaryWords = getMostRecentResponses() 
 
        if primaryWords.count >= 3 { 
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            return primaryWords 
        } 
 
        guard let targetTime = LocationManager.shared.currentDateTime else { 
            print("Current date and time is not available.") 
            return [] 
        } 
 
        do { 
            let oneHour: TimeInterval = 60 * 60 
            let startTime = targetTime.addingTimeInterval(-oneHour) 
 
            let fallbackQuery = responses 
                .join(requests, on: responses[requestId] == requests[idExpression]
) 
                .filter(requests[timeExpression] >= startTime) 
                .order(responses[responseId].desc) 
 
            let allFallbackResponses: AnySequence<Row> = try database?.prepare(fal
lbackQuery) ?? AnySequence([]) 
 
            var fallbackWordsCount: [String: Int] = [:] // Initialize words count 
for fallback 
 
            for responseRow in allFallbackResponses { 
                let requestWords = responseRow[response] // Assuming you're fetchi
ng the response words here 
                let words = requestWords.split(separator: ", ").map { String($0) } 
                for word in words { 
                    fallbackWordsCount[word, default: 0] += 1 
                } 
            } 
 
            var wordsCount: [String: Int] = [:] 
 
            for word in primaryWords { 
                wordsCount[word, default: 0] += 1 
            } 
 
            for (word, count) in fallbackWordsCount { 
                wordsCount[word, default: 0] += count 
            } 
 
            let topWords = wordsCount.sorted(by: { $0.value > $1.value }).prefix(3
).map { $0.key } 
 
            return Array(topWords) 
 
        } catch { 
            print("Query error: \(error)") 
            return [] 
        } 
    } 
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Appendix	M. Outliers	above	the	mean,	for	all	models	on	all	datasets
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Appendix	N. Example	of	Preface	on	Revised	Prompt	Meta	13b	Model		
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Appendix	O. Boxplot	of	results	including	revised	meta	models	
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